Why C++is not just an Object-Oriented Programming Language

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

C++ directly supports a variety of programming styles. In thist Geliber-
ately differs from languages designed to support a single way of writing pro-
grams. This paper briefly presents key programming styles directly supported by
C++ and argues that the support for multiple styles is one of its major strengths.
The styles presented include: traditional C-style, concrete classes, abstract
classes, traditional class hierarchies, abstract classes and class hierarchies, and
generic programming. To provide a context for this overview, | discuss criteria
for a reasonable and useful definition of “object-oriented programming.”

1 Introduction “object-oriented programming,” ‘“object-oriented
There are many tools and techniques that can help ﬁ{‘_a'ys's’ object-o”nented. design, ObJeCt_'
oriented technology,” etc., is, however, a burning

our effort to build useful, economical, and maintain-, ; e wh f o t the oft tod
able systems. To complete ambitious and comple?Sue or people who want to turn the olt-repeate

projects, we rely on a wide variety of techniques an romises made for techniques and languages called
100ls thellt must work together “object-oriented” into reality in everyday projects.

The title of this paper singles out a programmindt has become a practical rather than academic topic

languagé. However, the real topic is programming,Of discussion. What is ‘“object-oriented technol-

) . : 2 i it?
or if you prefer a longer formulation, the design an %yt . Vl\(/hgt :enecl;ltstr(]:an l:;e Expected bfromf-tlt. atd
implementation of systems. A programming lan-VNat MsKks?, OW_ 0 those tec nlgues, gnels, an
s compare with those associated with alterna-

guage is just one of the means by which we try t‘%;jk

: ?
achieve our goals. eAs. ‘ builder trving t lain t
The definition of “object-oriented program- systems bullder trying to expiain to an accoun-

ming” is no longer a popular topic of discussion atta;:)qt V\;hy.motnzytshsu.ld be spen; for toolst,hsupporttln?
major conferences. A practical definition of object-oriented techniques needs more than a state-

ment to the effect that “object-oriented is great” or
that “really great techniques are really object-
oriented.” You simply cannot ask someone to bet
their company’s future on vague promises phased in
ill-defined terms. Nor is a well-polished and logi-

cally coherent semi-mathematical treatment of the
T This paper is primarily based on an invited talk with the same title given at OOPSLA’95 in Austin Texas. The style ofrtfgs pape
clearly affected by its origins as a relatively short talk. |1 would have preferred this paper to be either much longesbomench

but | did not have the time to do either.

subject of direct practical use. contradictory definitions of “object oriented” in
We need to define “object-oriented” to be some-use. However, the mainstream usage stems directly
thing specific so that we can point out specific benefrom the ideas pioneered by programming language
fits and risks associated with its use. We must als8imula and the design techniques it was developed
be specific about what isot object-oriented, and to support. The communities of programmers and
what benefits and lack of benefits we can expeatlesigners centered around languages suchtas C

from various non-object-oriented techniques. CLOS, Eiffel, Object Pascal, and Smalltalk have
Consequently, this paper starts out discussingontributed much to this tradition.
what makes a good definition of “object-oriented.” A meaningful definition of any concept must

Next, | present a range of useful techniques whickexclude something.
may or may not be object oriented and discuss their
advantages and disadvantages. 3 A Broad Definition of “Object-oriented”

Given these general criteria for a definition of
"object-oriented” you can find several plausible
To be useful and intellectually honest, a definition ofcandidates, and several communities have their own
“object-oriented” must definitions. However, | suggest we stick to the tradi-

[1] not be a mere synonym for “good,” tional definition of object-oriented used within broad

[2] not exclude most accepted meanings, communities of programmers. A language or tech-

[3] have a firm historical basis, nique is object-oriented if and only if it directly sup-

[4] exclude something. ports:

Not everything good is object- oriented, and not [1]Abstraction— providing some form of classes
everything object-oriented is good. | think | can and objects.

support both claims from experience. | have seen [2]Inheritance— providing the ability to build
examples of the latter often enough: it is not uncom- new abstractions out of existing ones.

mon to find programs that apply techniques usually [3] Run-time polymorphism— providing some
deemed object-oriented extensively or even exclu- form of run-time binding.

sively, yet are hard to comprehend, hard to maintairfhis definition includes all major languages com-
and perform abysmally. Such examples occur imonly referred to as object-oriented: Ada95, Beta,
every programming language. But then, of courseC++, CLOS, Eiffel, Simula, Smalltalk, and many
some people respond “that just proves that the prather languages fit this definition. Classical pro-
gram wasn’ttruly object-oriented.” To which the gramming languages without classes, such as C, For-
answer must be that either the term has becontean4, and Pascal, are excluded. Languages that lack
meaningless or there must be something goodirect support for inheritance or run-time binding,
beyond what is called “object-oriented.” such as Ada88 and ML are also excluded.

On the other hand, when we define “object- ML is a good example of something that is good
oriented,” we must not be too exclusive. Object-but not object-oriented. | like ML; it is an interest-
oriented programming is a broad intellectual disciing, innovative, and powerful language, but it is
pline, not the mere use of specific language featurefunctional rather than object-oriented and its poly-
Attempts to define ‘“object-oriented” to mean morphism is resolved at compile time rather than at
“what I'm selling” are not uncommon, but are fun- run-time. Thus, saying that ML isn’t object-oriented
damentally sleazy. is not a criticism, it's an observation about defini-

Any definition of “object-oriented” should be tions and the nature of ML.
historically reasonable. Words are only useful for Techniques and tools are object-oriented if and
communication, really only mean something, if weonly if they support the use of object-oriented pro-
agree on a meaning for them. There are severgramming. For example, a design method is object-
plausible, logically coherent, and mutually oriented if its regular and proper use leads to

2 Defining “Object-oriented”

programs that exploit abstraction, inheritance, angrovides features deemed non-object-oriented must
polymorphism where appropriate. | strongly preferbe worse than a language that does not. People who
design methods that directly and naturally suppotiike a language to support classes as part of a hierar-
the use of at least one of the major object-orientedhy only and functions/methods attached to one spe-
languages supporting in ways that exploit its featuresific class only often call such a language “a pure
in an idiomatic way. object-oriented language.” If we don't like the idea
For example, it is often possible to simplify of restricting the definition of classes and functions
application code by hiding objects with different rep-that way we can call such a language “just an
resentations and different implementation detail®bject-oriented programming language.”
behind a common “abstract” interface (see §6.4 and | prefer to have more facilities available than can
86.6). Conversely, the implementation of relatecbe provided by methods defined on classes within a
concepts can often be greatly simplified by exploitsingle hierarchy. A lot of good design goes beyond
ing commonality through inheritance (see 86.5 andhat relatively narrow domain. Incidentally, | have
86.6). A major purpose of design methods and theome to dislike the adjective “hybrid” as used to
CASE tools that commonly support them is to makelistinguish *“pure” object-oriented systems from
design simpler, more regular, and more predictablethers. Too often, “hybrid” is used in a prejudicial
Thus, to earn the label “object-oriented,” a designmanner. If | must apply a descriptive label, | use the
method must regularly and predictably help the disphrase “multi-paradigm language” to describetC
covery of commonality that can be exploited in these
ways. Ideally, an object-oriented design methodt.1 Use of Language Features
must strongly encourage the expression of this conEven when all the features required to support
monality using the most appropriate facilities in oneobject-oriented programming are available, you
or more of the languages supporting object-orientedon’t need to use them all the time. Some classes
programming. Minimally, the method and its sup-just don't belong in a hierarchy and some functions
porting tools must not be a hindrance to the use afon’t belong to any particular object.
object-oriented facilities in the programming lan- The key to maintainable, efficient, and evolvable
guage used to implement the design. Much confusrograms isn’t particular language features. It is the
sion arise because not every design method thability to develop concepts needed for a solution and
claims to be object-oriented does that. to express them clearly in a program. Language fea-
Please remember that I'm looking for a practicakures exist to make such expression simple and
understanding of the notion of “object-oriented” direct.
rather than a formal definition. A formal definition Object-oriented programming can be done in a
is useful, indeed it may be essential. However, to blanguage lacking one or more of the features
relevant, a formal definition must match a coherentequired to directly support object-oriented program-
view of what the formal definition is meant to spec-ming. However, doing so is unnecessarily difficult,

ify precisely. very difficult to support with tools, and often pro-
hibitively expensive.
4 Purity Furthermore, there are things that can't be

There has been much debate about “purity,” in theexpressed directly using only the “pure” object-

context of languages supporting object-oriented pro(_)rlented constructs mentioned above. For example,

gramming. In my opinion, much of that discussionS®Me en'Fltles belong togethe.r,. but 'thelr relationships
is confused by the- often unstated- assumption are not hierarchal. Some entities simply do not obey

that not only does "“object-oriented” imply "good,” tShe ru'fﬁ. of ihp?rtlculatr) (it)jje.ct-orlentbe_d tlanguatgz.
but also by the further assumption that only ome 1hings that you bulld in-an object-onente

“object-oriented” features are good. Consequently,world are manipulated from the outside so that it is

it is — wrongly — assumed that a language thatd'ﬂ'CUIt to make guarantees about the way they are

used.

5 Ct+ Design Ideals algorithms.

[6] Coexistence with other languages and systems
— essential for functioning in real-world exe-
cution environments.

[7] Run-time compactness and speedassential
for classical systems programming.

[8] Static type safety- an integral property of
languages of the family to which+€ belongs
and valuable both for guaranteeing properties
of a design and for providing run-time and

| felt the need for facilities outside what is conven-
tionally called “object-oriented,” so | supplied some
in C+t+. However, @+ isn't meant to be everything
to everybody. No one programming language and
no one view of how to write programs is sufficient
for everything. Constraints-based programming,
logic programming, functional programming, and
various forms of concurrent programming are exam-
ples of good and useful styles of programming not space efficiency.

supported by €t L .
No single language can support every sterThese facilities and general properties can be sup-

However, a variety of styles can be supported Withiryi)orted in several alternative ways. For example, one

the framework of a single language. Where this CaHrogramming language may support a fapility .in its
be done, signifcant benefits arise from sharing §ore language where another supports it in a library.

common type system, a common toolset, etc. Thesse'm”ar_ly’ a facility provided by a run-tlme mecha-
in one language may be provided by a

technical advantages translate into important practplsm ot hanism i i
cal benefits such as enabling groups with moderatefy°TP"eIME MeEchanism in another.

y : : . ,
differing needs to share a language rather than hav- The requirement for coexistence is essential for

ing to apply a number of specialized languages. any language claiming to be general-purpose. Look-

C++ was designed to support a range of styleéng at the world from the perspective of a given pro-

that | considered fundamentally good and usefulgr"jlmming language, we find that almost every real-
life system contain parts that are written in others

Whether they were object-oriented, and in Whicf] 4 desianed ding to princioles f
sense of the word, was either irrelevant or a minorqnguages and designed according 1o principles for-

concern: eign to that language. To be general-purpose, a lan-

[1] Abstraction— the ability to represent concepts guage must somehovy take the unpredictable, ugly,

directly in a program and hide incidental and constantly changing demands of program frag-
details behind well-defined interfacesis the ments written in “other languages” into account,

key to every flexible and comprehensible sys- T,:) be genfu |n$lty g:ahn(iralll pu'rtptoser,] a I(;:lntguaggﬁ
tem of any significant size. must possess facilities that allow it to share data wi

[2] Encapsulation- the ability to provide guaran- program fragments written in other languages, to

tees that an abstraction is used only accordingvOke code fragments written in other languages,

to its specification— is crucial to defend nd have code invoked by code written in other lan-

abstractions against corruption guages. For example, systems relying on callbacks
[3] Polymorphism— the ability to provide the can be rather ugly to program, but not being able to
same interface to objects with differing imple- use such s.yst(.ems in a direct and idiomatic way
mentations- is crucial to simplify code using would be crippling for a language as a tool for real-
abstractions world programming. In many languages, a common
[4]Inheritance—' the ability to compose new use of “foreign” code is exactly to violate the lan-
abstractions from existing oreis one of the guages rules: to. QO thiqgs that can't bg dener
most powerful ways of constructing useful can't be done efficiently in the language itself.
abstractions Alternatively, access to facilities in "the outside
[5] Genericity— the ability to parameterize types world” could- be cgrefully fitted into the framework
and functions by types and valuess essen- of the object-oriented programming language

tial for expressing type-safe containers and éhrOL:gh .spl.ebmal. fam::ues in the run-pmef e.rl1.\t/.|ron.-
powerful tool for expressing general ment or in libraries. However, accessing facilities in

the manner they were meant to be used is often

easier and less awkward than to fit them into our lané Programming Style and Language Features

uage framework. A general mechanism for access- . , :
guag 9 T will now give examples of programming styles and

Ingt forelghn code al§o Iea(:st tof.tmore he)_(tzr_‘s_flellanguage features supporting them. Some are com-
fys emsn an a requirement o Mt each Indivi uamonly referred to as “object-oriented,” some are
foreign” facility into the language framework.

not, but that doesn’t prevent me from recommending
Over the years, we have seen spectacul%ern in some contexts

improvements both in hardware performance and in
compilation techniques. However, run-time effl-6.1 Conventional Notation

ciency and compact representation is still absolutel .
y P P ¥here are aspects of conventional code and conven-

essential to many people. tional notation that | would like to see maintained

Static type safety is an essential part in my VI€¥%ven in a strictly object-oriented overall design.

of both design and implementation (see, for exampIEeing able to say plain square root of two
[Stroustrup,1991]). The guarantees provided and th art(2) is nice, and so is the ability to write

discipline of design imposed have been foun +y*z and know that it means addto the product

extremely valuable by many people working in aofy andz. We have about 400 years of experience

Wld? rapge of appltlcatlon areas.b St.t_a:t!c type iE?Ck\ilvith such notation and it is deeply ingrained in our
ing is of course not a panacea, but it is something, [o1 cLiture.
would not attempt major projects without.

The fundamental ideal of C++ is actually the fun-

6.2 Concrete Types
damental ideal for a lot of languages: P

Very simple concepts, such as integers, floating
center box; c. Represent concepts and relationshipeint numbers, complex numbers, points, lines,
between concepts directly and affordably. pairs, dates, disk locations, bcd characters, error
_ .messages, currency, are usually not considered suit-
Naturally, there are many ways of approaching th'%ble topics for discussion in academic articles or at

ideal. It is worth remembgrmg that all.of the Ian'_conferences. These are usually considered too sim-
guages usually mentioned in a discussion of praCt\f)le to merit discussion. However, the mundane is

cal .use of object-orlgnted tech.nlques.are S_u'tabISften statistically more significant than the sophisti-
vehicles for good design. A rational discussion of ated

Iangg?ges |Z|one of relatlvedmerlts, apl)pllcafblllty 0 brovided they can be implemented in a way that
SPecilic problem areas, and personal preferenceg, simple, elegant, efficient and flexible enough, I

rather than one of absolutes. consider such simple concepts excellent candidates

Representing concepts directly is a restateme%r independent proper types as opposed to pre-

and possibly a generalization of ideas relating to datgaenting them to users as plain data Structures or as

ﬁ.bsuaﬁf“o? ar|1dt_ mfor:.m atlpn t: Id'?ga.tRepIeiem'?gparts of a larger class hierarchy. Consequently, part
Erac; |c.a treda 'onships !S ?I'h ra ||onah €y 0ofadesign effort should focus on these little abstrac-
object-oriented programming. cre are, oWeverl.’ions. These very concrete types should be designed

clean and useful relationships that are not h'erarChEarefully and supported well.

cal yet can still be represented directly in a program To illustrate why, I'll contrast this approach to

(for e>.<ample, see 56.3 and §_6'7)') the use of a plain data structure and to the use of
Being more concerned with producing good soft-

e ._class hierarchies. To make this discussion concrete,
Ware than. with finding the m'osF elegant expre§§|ori;|| use the example of a date.

of ideas in the abstract, | insist on affordability.

Affordability is a multi-facetted issue that involves

not only run-time efficiency, but also availability of

suitable hardware, availability of designers and pro-

grammers comfortable with new techniques, etc.

6.2.1 Structures and Functions functions will be explicitly declared not to
The simplest way of presenting a date in a program modify the value of the object;

is simply to specify its data layout. For example: [3]functions for manipulatingDate s without
struct date { actually having to know the details of the rep-
/I representation resentation or fiddle with the intricacies of the
% implementation.

Given that, programmers can do anything at all Witr%n addition,Date s can be freely copied.
» Prog ything This set of member functions supplied as mem-

date s. That gnythlng at all” is the“strength fmd bers ofDate should be those that provide a basic
weakness of this idea. Naturally, a “standard” set . . .

. . . . semantics for ate and also requires direct access
of functions is usually provided to manipulate a

to the representation @fate to be implemented.
structure such aslate . However, such a set of .
. . e The set of member functions should be almost
functions is rarely complete, and even when it is

) . minimal; many operations that users would find con-
programmers find reasons to manipulatate s

: - i venient can be supplied separately (see 86.3). | dis-
directly. Consequently, it is usually not possible to,. .
o . ike classes with dozens or even hundreds of mem-
change the definition ofdate after the initial

L e ber functions. Such a class does not represent a
release of the software; it is simply too difficult to

o well-thought-out concept; it's a glorified data struc-
track down every use ofdate and modify it use to , .
- ture produced by somebody who couldn’t decide on
the new definition.

what was really wanted.

The reason that the set of functions is rarely com- . .
. , . : . The member functions are declared non-virtual to
plete is that there is no incentive to make it so. A . .
. : ensure that there is no time or space overheads
programmer can always write new functions access-

: . Involved in using thidDate , and to ensure that the
ing the date structure, and the dominant culture

i semantics oDate cannot be modified later. Simi-
encourages the programmer to do so. Writing a neszarIy the representation oDate is declared
function that is “just right” for the job, carries no '

) . private to prevent access by any function not
overhead, and relies on no potentially untrustworth)éxplici,[Iy mentioned in the class itself

code is often considered better than improving a .
. ___The representation of a concrete type should be
standard and general-purpose set of access functions . .)
L L : : _coOmpact. Sometimes millions of objects of such
and using it. Often, itis also far easier. This trend is . .)
. . . Classes exist, and even with modern memory sizes
typically reinforced by poor documentation.

space overheads can be a burden. If nothing else,

: " . h b)
622 A Concrete Class reading and writing objects with bloated representa

. tions can be a nuisance.
A simple Date type can remedy most of the prob-

. . The use of concrete types must be fast. In my
lems related to using a data structure directly. Con-
world at least, programmers are prone to represent

sider: something as plain data structure out of fear of over-
class Date { heads supposedly associated with abstractions.
public: There are no time or space overheads associated

/I public interface, consisting

) i with the Date class as defined above. The size is
/I of non-virtual functions

orivate: identical to that of the plaimate structure, and

/I representation and other inlining is done for simple member functions to

/I implementation details make these as fast as the code a programmer would
% write accessing a plain structure directly.

Often, it is important that simple concrete types,
such asDate , be layout-compatible with simple
data structures, such date , as used in traditional
languages. This allows simple exchange or sharing
of information with code written in traditional

Such aDate type will provide
[1] constructors specifying how objects of the
type are to be initialized;
[2]functions for examining aDate; these

languages. This can be a major convenience if you.2.3 Re-using Concrete Types

operating system, your database, or your highFor many concrete types, derivation doesn’'t make

performance numeric library is written in a tradi-sense. Consider, deriving a new class fidate :
tional Ignguage and requires manipulation of data of class MyDate : public Date {
a specific layout. oo

TheDate class is very simple and very basic. It %
requires no elaborate framework, no class hierar-
chies, no clever dispatcher to mediate access, etc. It

Is it ever valid forMyDate to be used as a plain

doesn't affect the overall structure of a program
much; it just provides a lot of help at the detaile
programming level below the level of detail of
interest to most managers and to many designers.

If h hat simpl h h - . :
such types are that simple, why bother Spendthat can't easily added to in a way that makes sense.

ing time on them?

ate ? Well, that depends on whigityDate is, but

Jn my experience it is rare to find a concrete type

that makes a good base class without modification.

Derivation from a concrete type is almost always
a mistake. A concrete type is a self-contained entity

[1] The concepts best represented by such simpfa‘e concrete type .'S. re-used unmodlﬂed in the
) . same way as built-in types such iat are. For
types are common; most applications can usée

a few dozen or a few hundred such types?xample:

Thus, any benefits we get from a single con- class Date_and_time {

crete type, we get many times over. public:
[2] The problems relating to lack of encapsulation _ 4
: - private:
of plain structures (86.2.1) are eliminated. Date d:
[3] The replication of effort writing simple access Time t"
functions is eliminated. ¥

[4] Making a concrete type the subject of a con-

scious design effort typically results in a bet-

This form of use (reuse?) is usually simple, effec-

ter thought out, more comprehensive, and betlVe: and efficient.
ter documented concept. In principle, this

could equally well be done for the plain struc-
ture approach, but in practice that typically

doesn’t happen.

[5] Writing the basic functions of a concrete type
is not difficult, but it is not trivial either. For

Maybe it was a mistake not to desiDate to be
easy to modify through derivation? It is sometimes
asserted thatveryclass should be open to modifica-

tion by overriding and by access from derived class

member functions. This view leads to a variant of

Date along these lines:

example, adding a year to a date requires us to
handle leap years. By relying on common

access functions, we eventually achieve an
implementation that has been better thought

out and has fewer errors.

[6] Since more of the implementation is docu-
mented and shared, user code becomes more

uniform.
become easier to comprehend.

These are classical reuse benefits and | don't thinﬁbat a
we should decline them just because they are easy

obtain.

Thus, code written by others

Here, the functions are declareidtual

class Date2 {
public:
/I public interface, consisting
/I primarily of virtual functions
protected:
/I representation and other
/I implementation details

3

, meaning
class derived frorDate2 (in the style of

MyDate above) can provide its own versions. To

make it possible to write such overriding functions
easily and efficiently, the representation is declared

protected

. A protected member of a class is

accessible not just to the classes’ own members, but

also to the member functions of derived classes. only in the context of another class it can be declared

This achieves the objective of makimgate2 a member of that class exactly the way a function
arbitrarily mallable by derivation, yet keeping its can be:
user interface unchanged. However, there are costs:

e 4) - class Date {
[1] Efficiency of basic operations a Cr+ virtual public:
function call is a fraction slower than an ordi-
nary function call, virtual functions cannot be enum Month {
inlined as often as non-virtual functions, and a jan, feb, mar,
class with virtual functions typically incurs a apr, may, jun,
one word space overhead. jul, aug, sep,
[2] Need to use free storethe aim ofDate2 is _ oct, nov, dec
to allow objects of different classes derived b
from Date2 to be used interchangeably. J/
Because the sizes of these derived classes dif- ¥
fer, the obvious thing to do is to allocate them
on the free store and access them through Date::Month m = Date::nov;

pointers or references. Thus, the use of g9eNyore generally, &+ provides namespaces for

o oc vt cramaticaly decreex - grouping dclraions [Stousiup 19%]. For xan:
i) i ple, many operations oRate s shouldn't be mem-
polymorphlsm provided by the virtual func- bers of clasdDate because they don’t need direct
tions, accesses tDate2 s must be through ;. g5 to the representation obate . Providing

pointers or references. o such functions as non-member functions leads to a
Naturally, these costs are not always significant, angleanelDate class, but we would still like to make
as we will see in 86.4 the behavior of a class defineﬁl1

in this way is often exactly what we want. However
for a simple concrete type, suchRate2 , the costs
are unnecessary and can be significant. namespace Chrono {
Please note that the costs are fundamental; differ-
ent languages present the facilities differently, but
every language that provides run-time polymor-

e association between the functions and the class
'explicit:

/I facilities for dealing with time:

enum Month {

phism incur these costs in some way or other. //
Finally, a well-designed concrete type is often the k;
ideal representation for a more mallable type. For
example: class Date {
I
class Date3 { Y
public: '
/I public interface, consisting int diff(Date a, Date b):
/I primarily of virtual functions bool Ieapyear,(int V): ’
protected: _ Date next_weekday(Date d);
: Date d; Date next_saturday(Date d);
1
6.3 Namespaces }

Class hierarchies express (hierarchical) relationshipg, namespace is not a module; it is not an object. A
but not every relationship in a program can or shoulthamespace is a general scope mechanism to support
be expressed as a hierarchical relationship betweenvariety of techniques related to modularity. Not
classes. For example, if a class is intented for usacidentally, namespaces provides a way of avoiding

name clashes in software composed out of librarieisnplementation of implementation classes (here,

from different suppliers. For example: vector andlist). Ifind that when people design
namespace LibA { things, they typically first invent something fairly
class String { concrete. They design an array, they invent a list,
Il A-style string and only later do they discover an abstraction that
% covers both in a given context. Using abstract
n . classes as shown above, we use (re-useegjor
} andlist without the foresight (and cost) necessary

to design them as part of a common hierarchy.
As a matter of fact, you can do this “late abstrac-
tion” several times. Say, | want to represent the

namespace LibB {
class String {
/I B-style string

}: notion of “something you could read from.” This is
/Il a very different abstraction froset , yet | can pro-
} vide such an interface to arbitrary sets as well as for
lists, vectors, files, and input streams much in the
LibA::String s1 = "Nicholas"; way | providedset as an interface toector and
LibB::String s2 = "Annemarie"; list
Late abstraction using abstract classes allows us
6.4 Abstract Classes to provide different implementations of a concept

It is possible to completely disassociate implementagven when there is no significant similarity between
tion and interface. For example, we might imple-the implementations.

ment a set using either an array or a list in such a

way that the two kinds of sets can be used inte6.5 Classical Hierarchies

changeably: Sometimes we do have sufficient foresight to design
class set { a classical hierarchy. More importantly, sometimes
T the various implementations of a concept have a
}: high degree of commonality so that there is signifi-
cant benefit in organizing these implementations into
class v_set : public set, a hierarchy. For example, consider a class hierarchy
private vector { that one might find in an application relying on a
} . windows system:
' window
class |_set : public set, / \
private list { dial slider
1
2

ival_dial ival slider

or graphically: Presumably, the implementations of the application

vector set list classes ival_dial and ival_slider are
\\ _,/ greatly facilitated by code and data provided by the
v_set | set “system classes”window , dial , and slider

That is, you build your code incremently and your

| use the dotted lines to show thivate inheri- . .
eqerfaces incrementally.

tance is an implementation issue that does not affe
the interface of the derived class.

Importantly, a common interface (hesst) can
be provided long after the design and

6.6 Hierarchies and Abstract Classes initials. In the future, | expect namespaces (86.3) to
A classical hierarchy is a nice way of providing abe used instead.

variety of related concepts and a nice way of mini- The declaration of a class that ties an application
mizing the effort of building their implementations. class to the implementation hierarchy will look
However, you do get the classes in the hierarchgomething like this:

tightly coupled. If anything significant in a base class BB ival slider

class changes, all of the derived classes must change - public ival_slider,

(or at least be recompiled) to match. In particular, protected BB_slider {

any significant change to “system classes” at the public:

base of a hierarchy, such asndow, will affect /I functions overridingval_slider
application classes, such a@l_dial . Worse, /I functions as needed to implement

/I the application concepts
protected:
/I functions overridind3B_slider

the choice of a foundation library representing sys-
tem resources determines the structure of the appli-

cation class hierarchy and permeates the application /I andBB_window functions as

code. /I required to conform to user
There are quite a few ways of dealing with this. /| interface standards

For example, some languages have a solution (at its private:

associated costs) mandated, and some implementa- Il representation and other

tions of G+ allow major changes to base classes /I" implementation details

without requiring re-compilation of derived classes. Y

However, here I'll show a solution using abstractThis structure assumes that details of what is to be
classes to make dependencies explicit. Logically, ifisplayed by a windows system is expressed by
closely parallels the way the abstract clsss was overriding virtual functions in theéBB_window's

used to insulate users from the detailsv@€tor s hierarchy. This may not be the ideal organization of

andlist s. a user interface system, but it is not uncommon.
Here, an application hierarchy | use protected members and protected inheri-
ival_box tange tq allow classes d-erlved fr.om
BB_ival_slider to use information about its

val_dial ival slider implementation.
is written independently of implementation details6.7 Generic Programming
and then later tied into an implementation hierarchyA major theme in the € community over the last
without affecting the users of the application hierarfew years has been the development of techniques
chy: exploiting the template mechanism.
BB_window ival box BB window L
6.7.1 Parameterization
val dla |vaI slider Independent concepts shoulq be independently rep-
resented and should be combined only when needed.
BB kno% \BB slider Where this principle is violated, you either bun-
dle unrelated concepts together or create unnecessary
dependencies in the implementation of classes and
functions. In particular, fitting weakly related class
This expresses the design in such a way that tHgto a single hierarchy can be a source of unneces-
application code becomes independent of any changary and problem-causing dependencies.
in the implementation hierarchy. Consider the concepts of sorting, character,
| have used thBB prefix for realism; suppliers of string, and collating sequence. A sort algorithm is
major libraries invariably prepend some identifyingindependent from the concept of a character. The

BB _ival_dial BB ival_slider

concept of a string is independent of any particular — the collator supplying the character compari-

kind of a character. Finally, the collating sequence

son operations.

which you use when you sort strings of characters i§he ability to pass operations as template parameters

independent of these other three concepts.

is a very powerful expressive mechanism. It is also

This independence can be expressed directlymportant for efficiency. For example, it is trivial
Here is a string parameterized by the kind of charader a compiler to inline all uses efj() andlt()
ters contained so that we can make strings of bothhis can be a significant advantage compared to C

built-in and user-defined character types:

template<class C>
class string {
I

h

class Jchar {
/I Japanese characters

2
string<char> s1, s2;
string<unsigned char> usl, us2;

string<Jchar> js1, js2;

Independently, we can define the notion of a collat
ing sequence and a string comparison function:

template<class C>
class std_coll {
public:
bool eq(C a, C b)
{ return a==Db; }
bool It(C a, C b)
{return a<b; }

3

template<
class C,
class Coll = std_coll<C>
>
int cmp(
string<C>& s1,
string<C>& s2
)

/I compares1 with s2
/I using Coll::eq andColl:It
/I to do character comparisons

}

The cmp template function takes two template argu-
ments:
— the type of characters in the strings, and

where operations can only be passed as pointers to
functions so that function call overheads are
incurred.

The second template paramenter has a default so
we need only specify it if we want a non-standard
collating sequence. The first template parameter can
usually be deduced from the argumenttap() .

For example:

cmp(sl,s2);

cmp(jsl,js2);

cmp(usl,us2)
cmp<char,no_case>(s1,s2);

Here, no_case and

It()

is a collator definingeq()
not to be case sensitive.

Typically, thestring class, thecmp() func-

tion, the collator classes, and the character classes

will be written by different people. Only the final

user puts all of the independently developed pieces

together.

This style of design relying on templates and
additional template arguments (in this example,
Coll) to express policies, is the basis of much of
the G-+ standard library. The result is exceptional
flexibility and unsurpassed run-time efficiency.

6.7.2 Containers and Algorithms

| want to have algorithms written once and used for
objects of many different types. | want these algo-
rithms to run as fast as functions written for a single
argument type. | want this to be compile-time
checked so that | can be more confident of my code.
| don’t want to be forced to fit my types into a hier-
archy simply to be able to use them for the generic
algorithms.

The containers and algorithms in the+Cstan-
dard library use a variant of the philosophy of keep-
ing independent concepts separate. Much of the
library is based on the notion of a of sequence.
Examples of sequences are arrays, sets, lists, maps,

files. express clearly, how easily you can combine soft-
A sequence has a beginning and an end. The emdare from different sources, and how efficient and
is one beyond the last element of the sequenceaintainable the resulting programs are. In other
Positions in a sequence are represented by iteratorsvords, how you support good programming tech-
niques and good design techniques matters more

begin end

| | than labels and buzz words.

v v The fundamental idea is simply to improve
XXX -> ... -> XXX ->0 design and programming through abstraction. You

Given an iterator for an element of a sequence, wvé’am to hide details, you want to exploit any com-

can get to the next element using #¥e(increment) monality in a system, and you want to make this

operator. Given an iterator for an element, we Caﬁffordable. ,

access the element itself using thg(dereference) _I wogld like to encpurage you not to make

operator. Sbjgct-orlgnted ?_meanlngless term. The notion of
Given this simple notion, a surprising number of object-orlente_d I.S top frequently debased

useful algorithms can be expressed. For example, by equating it with good,

this template function writes all elements of a con- : Ey equatltr_\g it with ?h.smgle Iatr;gu?gg, O; d
tainer to output: y accepting everything as object-oriented.

| have argued that there areand must be- useful
template<class C> techniques beyond object-oriented programming and
void print(Cé& s) design. However, to avoid being totally misunder-

{ _ . stood, | would like to emphasize that | wouldn't
C::iterator p=s.begin(); : . . .
attempt a serious project using a programming lan-
while (p!=s.end()) { guage that didn’t at least support the classical notion
cout << *p; // output of object-oriented programming. In addition to
p++; Il next facilities that support object-oriented programming, |
} want— and G+ provides— features that go beyond
} those in their support for direct expression of con-

The G-+ standard library containers and algorithmsCepts and relationships.

are primarily the work of Alex Stepanov. A surpris- Several of the themes related t¢+Cprogram-

ing number of containers and algorithms can b&"ing style in this paper have been developed further
expressed using just a few kinds of iterators. Imporl? [Koenig,1995b]. The design and evolution of
tantly, the resulting generic algorithms are efficientCt*, including its most recent features, is discussed
even compared to hand-crafted assembly code. F#} [Stroustrup,1994].

example, the €+ standard library algorithm,

sort() is for many simple and realistic examples8 Acknowledgements

several times faster than the C standard libraryhanks to the OOPSLA'95 program committee for
gsort() function. For more information about the jnviting me to give the talk upon which this paper is
Ct+ standard library and the principles underlyinghased, and especially to May Loomis for encourag-

its design see [Koenig,1995] [Stepanov,1994]. ing me to get this paper written. Carolyn Heaps
_ transcribed the audio tape of my talk to produce the
7 Closing Remarks first draft of this paper. Tim Griffin and Christos

Are the various facilities presented above objectP0lyzois made many constructive comments.
oriented or not? Which ones? Using what definition
of object-oriented?
In most contexts, | think these are the wrong
guestions. What matters is what ideas you can

9 References

[Koenig,1995] Andrew Koenig (editor)Draft
Proposed International Standard for Informa-
tion Systems Programming Language+G .
ANSI| Standards Secretariat. CBEMA, 1250
Eye Street NW, Suite 200, Washington
DC20005, USA. 1995.

[Koenig,1995b] Andrew Koenig and Bjarne
Stroustrup: A Foundation for Native €
Styles Software— Practice & Experience.
To appear 1995.

[Stepanov,1994] Alexander Stepanov and Meng
Lee: The Standard Template LibrarylSO
Programming language*+€ project. Doc No:
X3J16/94-0095, WG21/N0482. May 1994.

[Stroustrup,1991] Bjarne Stroustrugthe G+
Programming Language Addison-Wesley.
1991.

[Stroustrup,1994] Bjarne Stroustruphe Design
and Evolution of €+. Addison-Wesley.
1994.

