
What is ‘‘Object-Oriented Programming’’? (1991 revised version)

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

‘‘Object-Oriented Programming’’ and ‘‘Data Abstraction’’ have become very com-
mon terms. Unfortunately, few people agree on what they mean. I will offer informal
definitions that appear to make sense in the context of languages like Ada, C++, Modula-
2, Simula, and Smalltalk. The general idea is to equate ‘‘support for data abstraction’’
with the ability to define and use new types and equate ‘‘support for object-oriented pro-
gramming’’ with the ability to express type hierarchies. Features necessary to support
these programming styles in a general purpose programming language will be discussed.
The presentation centers around C++ but is not limited to facilities provided by that lan-
guage.

1 Introduction

Not all programming languages can be ‘‘object oriented’’. Yet claims have been made to the effect that
APL, Ada, Clu, C++, CLOS, and Smalltalk are object-oriented programming languages. I have heard dis-
cussions of object-oriented design in C, Pascal, Modula-2, and CHILL. As predicted in the original version
of this paper, proponents of object-oriented Fortran and Cobol programming are now appearing. ‘‘Object-
oriented’’ has in many circles become a high-tech synonym for ‘‘good’’, and when you examine discus-
sions in the trade press, you can find arguments that appear to boil down to syllogisms like:

Ada is good
Object oriented is good

Ada is object oriented

We simply must be more careful with our concepts and logic.
This paper presents one view of what ‘‘object oriented’’ ought to mean in the context of a general pur-

pose programming language.
§2 Distinguishes ‘‘object-oriented programming’’ and ‘‘data abstraction’’ from each other and from

other styles of programming and presents the mechanisms that are essential for supporting the vari-
ous styles of programming.

§3 Presents features needed to make data abstraction effective.
§4 Discusses facilities needed to support object-oriented programming.
§5 Presents some limits imposed on data abstraction and object-oriented programming by traditional

hardware architectures and operating systems.

The first version of this paper was presented at the Association of Simula Users’ meeting in Stockholm, August 1986. Later, a version
was presented as an invited talk at the first European Conference on Object-Oriented Programming in Paris and published by Springer
Verlag. It also appeared in the May 1988 issue of IEEE Software Magazine. This version has been revised to reflect the latest version
of C++ as described in The Annotated C++ Reference Manual[5] approved by the ANSI C++ committee (X3J16) as the basis of formal
standardization. Copyright (c) AT&T.

- 2 -

Examples will be presented in C++. The reason for this is partly to introduce C++ and partly because C++ is
one of the few languages that supports both data abstraction and object-oriented programming in addition to
traditional programming techniques. Issues of concurrency and of hardware support for specific higher-
level language constructs are ignored in this paper.

2 Programming Paradigms

Object-oriented programming is a technique for programming – a paradigm for writing ‘‘good’’ pro-
grams for a set of problems. If the term ‘‘object-oriented programming language’’ means anything it must
mean a programming language that provides mechanisms that support the object-oriented style of program-
ming well.

There is an important distinction here. A language is said to support a style of programming if it pro-
vides facilities that makes it convenient (reasonably easy, safe, and efficient) to use that style. A language
does not support a technique if it takes exceptional effort or skill to write such programs; it merely enables
the technique to be used. For example, you can write structured programs in Fortran, write type-secure pro-
grams in C, and use data abstraction in Modula-2, but it is unnecessarily hard to do because these languages
do not support those techniques.

Support for a paradigm comes not only in the obvious form of language facilities that allow direct use
of the paradigm, but also in the more subtle form of compile-time and/or run-time checks against uninten-
tional deviation from the paradigm. Type checking is the most obvious example of this; ambiguity detec-
tion and run-time checks can be used to extend linguistic support for paradigms. Extra-linguistic facilities
such as standard libraries and programming environments can also provide significant support for para-
digms.

A language is not necessarily better than another because it possesses a feature the other does not.
There are many example to the contrary. The important issue is not so much what features a language pos-
sesses but that the features it does possess are sufficient to support the desired programming styles in the
desired application areas:

[1] All features must be cleanly and elegantly integrated into the language.
[2] It must be possible to use features in combination to achieve solutions that would otherwise have

required extra separate features.
[3] There should be as few spurious and ‘‘special purpose’’ features as possible.
[4] A feature should be such that its implementation does not impose significant overheads on programs

that do not require it.
[5] A user need only know about the subset of the language explicitly used to write a program.

The last two principles can be summarized as ‘‘what you don’t know won’t hurt you.’’ If there are any
doubts about the usefulness of a feature it is better left out. It is much easier to add a feature to a language
than to remove or modify one that has found its way into the compilers or the literature.

I will now present some programming styles and the key language mechanisms necessary for support-
ing them. The presentation of language features is not intended to be exhaustive.

Procedural Programming
The original (and probably still the most commonly used) programming paradigm is:

Decide which procedures you want;
use the best algorithms you can find.

The focus is on the design of the processing, the algorithm needed to perform the desired computation.
Languages support this paradigm by facilities for passing arguments to functions and returning values from
functions. The literature related to this way of thinking is filled with discussion of ways of passing argu-
ments, ways of distinguishing different kinds of arguments, different kinds of functions (procedures, rou-
tines, macros, ...), etc. Fortran is the original procedural language; Algol60, Algol68, C, and Pascal are
later inventions in the same tradition.

A typical example of ‘‘good style’’ is a square root function. Given an argument, it produces a result.
To do this, it performs a well understood mathematical computation:

- 3 -

double sqrt(double arg)
{

// the code for calculating a square root
}

void some_function()
{

double root2 = sqrt(2);
// ...

}

From a program organization point of view, functions are used to create order in a maze of algorithms.

Data Hiding
Over the years, the emphasis in the design of programs has shifted away from the design of procedures

towards the organization of data. Among other things, this reflects an increase in program size. A set of
related procedures with the data they manipulate is often called a module. The programming paradigm
becomes:

Decide which modules you want;
partition the program so that data is hidden in modules.

This paradigm is also known as the ‘‘data hiding principle’’. Where there is no grouping of procedures
with related data the procedural programming style suffices. In particular, the techniques for designing
‘‘good procedures’’ are now applied for each procedure in a module. The most common example is a defi-
nition of a stack module. The main problems that have to be solved are:

[1] Provide a user interface for the stack (for example, functions push() and pop()).
[2] Ensure that the representation of the stack (for example, a vector of elements) can only be accessed

through this user interface.
[3] Ensure that the stack is initialized before its first use.

Here is a plausible external interface for a stack module:

// declaration of the interface of module stack of characters
char pop();
void push(char);
const stack_size = 100;

Assuming that this interface is found in a file called stack.h, the ‘‘internals’’ can be defined like this:

#include "stack.h"
static char v[stack_size]; // ‘‘static’’ means local to this file/module
static char* p = v; // the stack is initially empty

char pop()
{

// check for underflow and pop
}

void push(char c)
{

// check for overflow and push
}

It would be quite feasible to change the representation of this stack to a linked list. A user does not
have access to the representation anyway (since v and p were declared static, that is, local to the
file/module in which they were declared). Such a stack can be used like this:

- 4 -

#include "stack.h"

void some_function()
{

push(’c’);
char c = pop();
if (c != ’c’) error("impossible");

}

Pascal (as originally defined) doesn’t provide any satisfactory facilities for such grouping: the only
mechanism for hiding a name from ‘‘the rest of the program’’ is to make it local to a procedure. This leads
to strange procedure nestings and over-reliance on global data.

C fares somewhat better. As shown in the example above, you can define a ‘‘module’’ by grouping
related function and data definitions together in a single source file. The programmer can then control
which names are seen by the rest of the program (a name can be seen by the rest of the program unless it
has been declared static). Consequently, in C you can achieve a degree of modularity. However, there
is no generally accepted paradigm for using this facility and the technique of relying on static declara-
tions is rather low level.

One of Pascal’s successors, Modula-2, goes a bit further. It formalizes the concept of a module, making
it a fundamental language construct with well defined module declarations, explicit control of the scopes of
names (import/export), a module initialization mechanism, and a set of generally known and accepted
styles of usage.

The differences between C and Modula-2 in this area can be summarized by saying that C only enables
the decomposition of a program into modules, while Modula-2 supports that technique.

Data Abstraction
Programming with modules leads to the centralization of all data of a type under the control of a type

manager module. If one wanted two stacks, one would define a stack manager module with an interface
like this:

class stack_id; // stack_id is a type
// no details about stacks or stack_ids are known here

stack_id create_stack(int size); // make a stack and return its identifier
destroy_stack(stack_id); // call when stack is no longer needed

void push(stack_id, char);
char pop(stack_id);

This is certainly a great improvement over the traditional unstructured mess, but ‘‘types’’ implemented this
way are clearly very different from the built-in types in a language. Each type manager module must define
a separate mechanism for creating ‘‘variables’’ of its type, there is no established norm for assigning object
identifiers, a ‘‘variable’’ of such a type has no name known to the compiler or programming environment,
nor do such ‘‘variables’’ obey the usual scope rules or argument passing rules.

A type created through a module mechanism is in most important aspects different from a built-in type
and enjoys support inferior to the support provided for built-in types. For example:

void f()
{

stack_id s1;
stack_id s2;

s1 = create_stack(200);
// Oops: forgot to create s2

push(s1,’a’);
char c1 = pop(s1);
if (c1 != ’a’) error("impossible");

- 5 -

push(s2,’b’);
char c2 = pop(s2);
if (c2 != ’b’) error("impossible");

destroy_stack(s2);
// Oops: forgot to destroy s1

}

In other words, the module concept that supports the data hiding paradigm enables this style of program-
ming, but does not support it.

Languages such as Ada, Clu, and C++ attack this problem by allowing a user to define types that behave
in (nearly) the same way as built-in types. Such a type is often called an abstract data type†. I prefer the
term ‘‘user-defined type.’’ A way of defining types that are somewhat more abstract is demonstrated in the
‘‘Multiple Implementations’’ subsection of §3. The programming paradigm becomes:

Decide which types you want;
provide a full set of operations for each type.

Where there is no need for more that one object of a type the data hiding programming style using mod-
ules suffices. Arithmetic types such as rational and complex numbers are common examples of user-
defined types:

class complex {
double re, im;

public:
complex(double r, double i) { re=r; im=i; }
complex(double r) { re=r; im=0; } // float->complex conversion

friend complex operator+(complex, complex);
friend complex operator-(complex, complex); // binary minus
friend complex operator-(complex); // unary minus
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);
// ...

};

The declaration of class (that is, user-defined type) complex specifies the representation of a complex
number and the set of operations on a complex number. The representation is private; that is, re and im
are accessible only to the functions specified in the declaration of class complex. Such functions can be
defined like this:

complex operator+(complex a1, complex a2)
{

return complex(a1.re+a2.re,a1.im+a2.im);
}

and used like this:

complex a = 2.3;
complex b = 1/a;
complex c = a+b*complex(1,2.3);
// ...
c = -(a/b)+2;

Most, but not all, modules are better expressed as user defined types. For concepts where the ‘‘module
representation’’ is desirable even when a proper facility for defining types is available, the programmer can

† ‘‘Those types are not "abstract"; they are as real as int and float.’’ – Doug McIlroy. An alternative definition of abstract data
types would require a mathematical ‘‘abstract’’ specification of all types (both built-in and user-defined). What is referred to as types
in this paper would, given such a specification, be concrete specifications of such truly abstract entities.

- 6 -

declare a type and only a single object of that type. Alternatively, a language might provide a module con-
cept in addition to and distinct from the class concept.

Problems with Data Abstraction
An abstract data type defines a sort of black box. Once it has been defined, it does not really interact

with the rest of the program. There is no way of adapting it to new uses except by modifying its definition.
This can lead to severe inflexibility. Consider defining a type shape for use in a graphics system.
Assume for the moment that the system has to support circles, triangles, and squares. Assume also that you
have some classes:

class point{ /* ... */ };
class color{ /* ... */ };

You might define a shape like this:

enum kind { circle, triangle, square };

class shape {
point center;
color col;
kind k;
// representation of shape

public:
point where() { return center; }
void move(point to) { center = to; draw(); }
void draw();
void rotate(int);
// more operations

};

The ‘‘type field’’ k is necessary to allow operations such as draw() and rotate() to determine what
kind of shape they are dealing with (in a Pascal-like language, one might use a variant record with tag k).
The function draw() might be defined like this:

void shape::draw()
{

switch (k) {
case circle:

// draw a circle
break;

case triangle:
// draw a triangle
break;

case square:
// draw a square

}
}

This is a mess. Functions such as draw() must ‘‘know about’’ all the kinds of shapes there are. There-
fore the code for any such function grows each time a new shape is added to the system. If you define a
new shape, every operation on a shape must be examined and (possibly) modified. You are not able to add
a new shape to a system unless you have access to the source code for every operation. Since adding a new
shape involves ‘‘touching’’ the code of every important operation on shapes, it requires great skill and
potentially introduces bugs into the code handling other (older) shapes. The choice of representation of
particular shapes can get severely cramped by the requirement that (at least some of) their representation
must fit into the typically fixed sized framework presented by the definition of the general type shape.

- 7 -

Object-Oriented Programming
The problem is that there is no distinction between the general properties of any shape (a shape has a

color, it can be drawn, etc.) and the properties of a specific shape (a circle is a shape that has a radius, is
drawn by a circle-drawing function, etc.). Expressing this distinction and taking advantage of it defines
object-oriented programming. A language with constructs that allows this distinction to be expressed and
used supports object-oriented programming. Other languages don’t.

The Simula inheritance mechanism provides a solution. First, specify a class that defines the general
properties of all shapes:

class shape {
point center;
color col;
// ...

public:
point where() { return center; }
void move(point to) { center = to; draw(); }
virtual void draw();
virtual void rotate(int);
// ...

};

The functions for which the calling interface can be defined, but where the implementation cannot be
defined except for a specific shape, have been marked ‘‘virtual’’ (the Simula and C++ term for ‘‘may be
re-defined later in a class derived from this one’’). Given this definition, we can write general functions
manipulating shapes:

void rotate_all(shape* v, int size, int angle)
// rotate all members of vector "v" of size "size" "angle" degrees
{

for (int i = 0; i < size; i++) v[i].rotate(angle);
}

To define a particular shape, we must say that it is a shape and specify its particular properties (includ-
ing the virtual functions).

class circle : public shape {
int radius;

public:
void draw() { /* ... */ };
void rotate(int) {} // yes, the null function

};

In C++, class circle is said to be derived from class shape, and class shape is said to be a base of
class circle. An alternative terminology calls circle and shape subclass and superclass, respec-
tively.

The programming paradigm is:

Decide which classes you want;
provide a full set of operations for each class;

make commonality explicit by using inheritance.

Where there is no such commonality data abstraction suffices. The amount of commonality between
types that can be exploited by using inheritance and virtual functions is the litmus test of the applicability of
object-oriented programming to an application area. In some areas, such as interactive graphics, there is
clearly enormous scope for object-oriented programming. For other areas, such as classical arithmetic
types and computations based on them, there appears to be hardly any scope for more than data abstraction
and the facilities needed for the support of object-oriented programming seem unnecessary†.

† However, more advanced mathematics may benefit from the use of inheritance: Fields are specializations of rings and vector spaces a
special case of modules.

- 8 -

Finding commonality among types in a system is not a trivial process. The amount of commonality to
be exploited is affected by the way the system is designed. When designing a system, commonality must
be actively sought, both by designing classes specifically as building blocks for other types, and by examin-
ing classes to see if they exhibit similarities that can be exploited in a common base class.

For attempts to explain what object-oriented programming is without recourse to specific programming
language constructs see Nygaard[14] and Kerr[10]. For a case study in object-oriented programming see
Cargill[3].

Having examined the minimum support needed for procedural programming, data hiding, data abstrac-
tion, and object-oriented programming we will go into some detail describing features that – while not
essential – can make data abstraction and object-oriented more effective.

3 Support for Data Abstraction

The basic support for programming with data abstraction consists of facilities for defining a set of oper-
ations (functions and operators) for a type and for restricting the access to objects of the type to that set of
operations. Once that is done, however, the programmer soon finds that language refinements are needed
for convenient definition and use of the new types. Operator overloading is a good example of this.

Initialization and Cleanup
When the representation of a type is hidden some mechanism must be provided for a user to initialize

variables of that type. A simple solution is to require a user to call some function to initialize a variable
before using it. For example:

class vector {
int sz;
int* v;

public:
void init(int size); // call init to initialize sz and v

// before the first use of a vector
// ...

};

vector v;
// don’t use v here
v.init(10);
// use v here

This is error prone and inelegant. A better solution is to allow the designer of a type to provide a distin-
guished function to do the initialization. Given such a function, allocation and initialization of a variable
becomes a single operation (often called instantiation or construction) instead of two separate operations.
Such an initialization function is often called a constructor. In cases where construction of objects of a type
is non-trivial, one often needs a complementary operation to clean up objects after their last use. In C++,
such a cleanup function is called a destructor. Consider a vector type:

class vector {
int sz; // number of elements
int* v; // pointer to integers

public:
vector(int); // constructor
˜vector(); // destructor
int& operator[](int index); // subscript operator

};

The vector constructor can be defined to allocate space like this:

- 9 -

vector::vector(int s)
{

if (s<=0) error("bad vector size");
sz = s;
v = new int[s]; // allocate an array of "s" integers

}

The vector destructor frees the storage used:

vector::˜vector()
{

delete v; // deallocate the memory pointed to by v
}

C++ does not support garbage collection. This is compensated for, however, by enabling a type to maintain
its own storage management without requiring intervention by a user. This is a common use for the
constructor/destructor mechanism, but many uses of this mechanism are unrelated to storage management.

Assignment and Initialization
Controlling construction and destruction of objects is sufficient for many types, but not for all. It can

also be necessary to control all copy operations. Consider class vector:

vector v1(100);
vector v2 = v1; // make a new vector v2 initialized to v1
v1 = v2; // assign v2 to v1

It must be possible to define the meaning of the initialization of v2 and the assignment to v1. Alterna-
tively it should be possible to prohibit such copy operations; preferably both alternatives should be avail-
able. For example:

class vector {
int* v;
int sz;

public:
// ...
void operator=(const vector&); // assignment
vector(const vector&); // initialization

};

specifies that user-defined operations should be used to interpret vector assignment and initialization.
Assignment might be defined like this:

vector::operator=(const vector& a) // check size and copy elements
{

if (sz != a.sz) error("bad vector size for =");
for (int i = 0; i<sz; i++) v[i] = a.v[i];

}

Since the assignment operation relies on the ‘‘old value’’ of the vector being assigned to, the initialization
operation must be different. For example:

vector::vector(const vector& a) // initialize a vector from another vector
{

sz = a.sz; // same size
v = new int[sz]; // allocate element array
for (int i = 0; i<sz; i++) v[i] = a.v[i]; // copy elements

}

In C++, a copy constructor, for example X(const X&) defines all initialization of objects of type X with
another object of type X. In addition to explicit initialization copy constructors are used to handle argu-
ments passed ‘‘by value’’ and function return values.

In C++ assignment of an object of class X can be prohibited by declaring assignment private:

- 10 -

class X {
void operator=(const X&); // only members of X can
X(const X&); // copy an X
// ...

public:
// ...

};

Ada does not support constructors, destructors, overloading of assignment, or user-defined control of
argument passing and function return. This severely limits the class of types that can be defined and forces
the programmer back to ‘‘data hiding techniques’’; that is, the user must design and use type manager mod-
ules rather than proper types.

Parameterized Types
Why would you want to define a vector of integers anyway? A user typically needs a vector of ele-

ments of some type unknown to the writer of the vector type. Consequently the vector type ought to be
expressed in such a way that it takes the element type as an argument:

template<class T> class vector { // vector of elements of type T
T* v;
int sz;

public:
vector(int s)
{

if (s <= 0) error("bad vector size");
v = new T[sz = s]; // allocate an array of "s" "T"s

}
T& operator[](int i);
int size() { return sz; }
// ...

};

A template specifies a family of types generated by specifying the the templats argument(s).
Vectors of specific types can now be defined and used:

vector<int> v1(100); // v1 is a vector of 100 integers
vector<complex> v2(200); // v2 is a vector of 200 complex numbers

v2[i] = complex(v1[x],v1[y]);

Ada, Clu, ML, and C++ support parameterized types†. There need not be any run-time overheads com-
pared with a class where all types involved are specified directly.

A problem with parameterized types is that each instantiation creates an independent type. For exam-
ple, the type vector<char> is unrelated to the type vector<complex>. Ideally one would like to be
able to express and utilize the commonality of types generated from the same parameterized type. For
example, both vector<char> and vector<complex> have a size() function that is independent of
the parameter type. It is possible, but not trivial, to deduce this from the definition of class vector and
then allow size() to be applied to any vector. An interpreted or dynamically compiled language (such
as Smalltalk) or a language supporting both parameterized types and inheritance (such as C++) has an
advantage here.

Exception Handling
As programs grow, and especially when libraries are used extensively, standards for handling errors (or

more generally: ‘‘exceptional circumstances’’) become important. Ada, Algol68, Clu, and C++ each sup-
port a standard way of handling exceptions††.

† The ANSI C++ committee, X3J16, only accepted templates into C++ in July 1990 so only a few C++ implementations support tem-
plates at the time of writing.
†† The ANSI C++ committee, X3J16, only accepted exception handling into C++ in November 1990 so C++ implementations that sup-
port exception handling are rare at the time of writing.

- 11 -

Consider again the vector example:

class vector {
// ...
class range { }; // type to be used for exceptions

};

int& vector::operator[](int i)
{

if (i<0 || sz<=i) throw range();
return v[i];

}

Instead of calling an error function, vector::operator[]() can invoke the exception handling code,
‘‘throw the range exception.’’ This will cause the call stack to be unraveled until an exception handler for
vector::range is found; this handler will than be executed.

An exception handler may be defined for a specific block:

void f(int i) {
try { // exceptions in this try block are handled by the

// exception handler defined below
vector v(i);
// ...
v[i] = 7; // causes vector::range exception
// ...
int i = g(); // might cause a vector::range exception

}
catch (vector::range) {

error("f(): vector range error");
return;

}
}

There are many ways of defining exceptions and the behavior of exception handlers. The facility sketched
here resembles the ones found in Clu and ML.

A poor implementation of exception handling can be a serious drain on run-time efficiency and the
portability of language implementations. The C++ exception handling can be implemented so that code is
not executed unless an exception is thrown or portably across C implementations by (implicitly) using the
C standard library functions setjmp() and longjmp().

Type conversions
User-defined type conversions, such as the one from floating point numbers to complex numbers

implied by the constructor complex(double), have proven unexpectedly useful in C++. Such conver-
sions can be applied explicitly or the programmer can rely on the compiler to add them implicitly where
necessary and unambiguous:

complex a = complex(1);
complex b = 1; // implicit: 1 -> complex(1)
a = b+complex(2);
a = b+2; // implicit: 2 -> complex(2)

User-defined type conversions were introduced into C++ because mixed mode arithmetic is the norm in lan-
guages for numerical work and because most user-defined types used for ‘‘calculation’’ (for example,
matrices, character strings, and machine addresses) have natural mappings to and/or from other types.

One use of coercions has proven especially useful from a program organization point of view:

complex a = 2;
complex b = a+2; // interpreted as operator+(a,complex(2))
b = 2+a; // interpreted as operator+(complex(2),a)

Only one function is needed to interpret ‘‘+’’ operations and the two operands are handled identically by
the type system. Furthermore, class complex is written without any need to modify the concept of

- 12 -

integers to enable the smooth and natural integration of the two concepts. This is in contrast to a ‘‘pure
object-oriented system’’ where the operations would be interpreted like this:

a+2; // a.operator+(2)
2+a; // 2.operator+(a)

making it necessary to modify class integer to make 2+a legal. Modifying existing code should be
avoided as far as possible when adding new facilities to a system. Typically, object-oriented programming
offers superior facilities for adding to a system without modifying existing code. In this case, however,
data abstraction facilities provide a better solution.

Iterators
It has been claimed that a language supporting data abstraction must provide a way of defining control

structures[12]. In particular, a mechanism that allows a user to define a loop over the elements of some
type containing elements is often needed. This must be achieved without forcing a user to depend on
details of the implementation of the user-defined type. Given a sufficiently powerful mechanism for defin-
ing new types and the ability to overload operators, this can be handled without a separate mechanism for
defining control structures.

For a vector, defining an iterator is not necessary since an ordering is available to a user through the
indices. I’ll define one anyway to demonstrate the technique. There are several possible styles of iterators.
My favorite relies on overloading the function application operator ()†:

class vector_iterator {
vector& v;
int i;

public:
vector_iterator(vector& r) { i = 0; v = r; }
int operator()() { return i<v.size() ? v.elem(i++) : 0; }

};

A vector_iterator can now be declared and used for a vector like this:

void f(vector& v)
{

vector_iterator next(v);
int i;
while (i=next()) print(i); // maybe too ‘cute’

}

More than one iterator can be active for a single object at one time, and a type may have several different
iterator types defined for it so that different kinds of iteration may be performed. An iterator is a rather
simple control structure. More general mechanisms can also be defined. For example, the C++ standard
library provides a co-routine class[16].

For many ‘‘container’’ types, such as vector, one can avoid introducing a separate iterator type by
defining an iteration mechanism as part of the type itself. A vector might be defined to have a ‘‘current
element’’:

class vector {
int* v;
int sz;
int current;

public:
// ...
int next() { return (current < sz) ? v[current++] : 0; }
int prev() { return (0 <= --current) ? v[current] : 0; }

};

Then the iteration can be performed like this:

† This style also relies on the existence of a distinguished value to represent ‘‘end of iteration’’. Often, in particular for C++ pointer
types, 0 can be used.

- 13 -

vector v(sz);
int i;
while (i=v.next()) print(i);

This solution is not as general as the iterator solution, but avoids overhead in the important special case
where only one kind of iteration is needed and where only one iteration at a time is needed for a vector. If
necessary, a more general solution can be applied in addition to this simple one. Note that the ‘‘simple’’
solution requires more foresight from the designer of the container class than the iterator solution does.
The iterator-type technique can also be used to define iterators that can be bound to several different con-
tainer types thus providing a mechanism for iterating over different container types with a single iterator
type.

Multiple Implementations
The basic mechanism for supporting object-oriented programming, derived classes, and virtual func-

tions can be used to support data abstraction by allowing several different implementations for a given type.
Consider again the stack example:

template<class T>
class stack {
public:

virtual void push(T) = 0; // pure virtual function
virtual T pop() = 0; // pure virtual function

};

The =0 notation specifies that no definition is required for the virtual function and that the class is abstract,
that is, the class can only be used as a base class. This allows stacks to be used, but not created:

stack<cat> s; // error: stack is abstract

void some_function(stack<cat>& s, cat kitty) // ok
{

s.push(kitty);
cat c2 = s.pop();
// ...

}

Since no representation is specified in the stack interface, its users are totally insulated from implementa-
tion details.

We can now provide several distinct implementations of stacks. For example, we can provide a stack
implemented with an array

template<class T>
class astack : public stack<T> {

// actual representation of a stack object
// in this case an array
// ...

public:
astack(int size);
˜astack();

void push(T);
T pop();

};

and elsewhere a stack implemented using a linked list:

template<class T>
class lstack : public stack<T> {

// ...
};

We can now create and use stacks:

- 14 -

void g()
{

lstack<cat> s1(100);
astack<cat> s2(100);

cat ginger;
cat snowball;

some_function(s1,ginger);
some_function(s2,snowball);

}

Only the creator of stacks, g(), needs to worry about different kinds of stacks, the user
some_function() is totally insulated from such details. The price of this flexibility is that each opera-
tion on such a type must be a virtual function.

Implementation Issues
The support needed for data abstraction is primarily provided in the form of language features imple-

mented by a compiler. However, parameterized types are best implemented with support from a linker with
some knowledge of the language semantics, and exception handling requires support from the run-time
environment. Both can be implemented to meet the strictest criteria for both compile time speed and effi-
ciency without compromising generality or programmer convenience.

As the power to define types increases, programs to a larger degree depend on types from libraries (and
not just those described in the language manual). This naturally puts greater demands on facilities to
express what is inserted into or retrieved from a library, facilities for finding out what a library contains,
facilities for determining what parts of a library are actually used by a program, etc.

For a compiled language facilities for calculating the minimal compilation necessary after a change
become important. It is essential that the linker/loader – with suitable help from the compiler – is capable
of bringing a program into memory for execution without also bringing in large amounts of related, but
unused, code. In particular, a library/linker/loader system that brings the code for every operation on a type
into core just because the programmer used one or two operations on the type is worse than useless.

4 Support for Object-Oriented programming

The basic support a programmer needs to write object-oriented programs consists of a class mechanism
with inheritance and a mechanism that allows calls of member functions to depend on the actual type of an
object (in cases where the actual type is unknown at compile time). The design of the member function
calling mechanism is critical. In addition, facilities supporting data abstraction techniques (as described
above) are important because the arguments for data abstraction and for its refinements to support elegant
use of types are equally valid where support for object-oriented programming is available. The success of
both techniques hinges on the design of types and on the ease, flexibility, and efficiency of such types.
Object-oriented programming allows user-defined types to be far more flexible and general than the ones
designed using only data abstraction techniques.

Calling Mechanisms
The key language facility supporting object-oriented programming is the mechanism by which a mem-

ber function is invoked for a given object. For example, given a pointer p, how is a call p->f(arg) han-
dled? There is a range of choices.

In languages such as C++ and Simula, where static type checking is extensively used, the type system
can be employed to select between different calling mechanisms. In C++, two alternatives are available:

[1] A normal function call: the member function to be called is determined at compile time (through a
lookup in the compiler’s symbol tables) and called using the standard function call mechanism with
an argument added to identify the object for which the function is called. Where the ‘‘standard
function call’’ is not considered efficient enough, the programmer can declare a function inline
and the compiler will attempt to inline expand its body. In this way, one can achieve the efficiency
of a macro expansion without compromising the standard function semantics. This optimization is

- 15 -

equally valuable as a support for data abstraction.
[2] A virtual function call: The function to be called depends on the type of the object for which it is

called. This type cannot in general be determined until run time. Typically, the pointer p will be of
some base class B and the object will be an object of some derived class D (as was the case with the
base class shape and the derived class circle above). The call mechanism must look into the
object and find some information placed there by the compiler to determine which function f is to
be called. Once that function is found, say D::f, it can be called using the mechanism described
above. The name f is at compile time converted into an index into a table of pointers to functions.
This virtual call mechanism can be made essentially as efficient as the ‘‘normal function call’’
mechanism. In the standard C++ implementation, only five additional memory references are used.

In languages with weak static type checking a more elaborate mechanism must be employed. What is
done in a language like Smalltalk is to store a list of the names of all member functions (methods) of a class
so that they can be found at run time:

[3] A method invocation: First the appropriate table of method names is found by examining the object
pointed to by p. In this table (or set of tables) the string "f" is looked up to see if the object has an
f(). If an f() is found it is called; otherwise some error handling takes place. This lookup differs
from the lookup done at compile time in a statically checked language in that the method invocation
uses a method table for the actual object.

A method invocation is inefficient compared with a virtual function call, but more flexible. Since static
type checking of arguments typically cannot be done for a method invocation, the use of methods must be
supported by dynamic type checking.

Type Checking
The shape example showed the power of virtual functions. What, in addition to this, does a method

invocation mechanism do for you? You can attempt to invoke any method for any object.
The ability to invoke any method for any object enables the designer of general purpose libraries to

push the responsibility for handling types onto the user. Naturally this simplifies the design of libraries.
However, it then becomes the responsibility of the user to avoid type mismatches like this:

// assume dynamic type checking.
// *** NOT C++ ***

Stack s; // Stack can hold pointers to objects of any type

cs.push(new Saab900);
cs.push(new Saab37B);

cs.pop()->takeoff(); // fine: a Saab37B is a plane

cs.pop()->takeoff(); // Oops! Run time error: a Saab 900 is a car
// a car does not have a takeoff method.

An attempt to use a car as a plane will be detected by the message handler and an appropriate error
handler will be called. However, that is only a consolation when the user is also the programmer. The
absence of static type checking makes it difficult to guarantee that errors of this class are not present in sys-
tems delivered to end-users.

Combinations of parameterized classes and the use of virtual functions can approach the flexibility, ease
of design, and ease of use of libraries designed with method lookup without relaxing the static type check-
ing or incurring significant run time overheads (in time or space). For example:

stack<plane*> cs;

cs.push(new Saab900); // Compile time error:
// type mismatch: car* passed, plane* expected

cs.push(new Saab37B);

cs.pop()->takeoff(); // fine: a Saab 37B is a plane
cs.pop()->takeoff();

- 16 -

The use of static type checking and virtual function calls leads to a somewhat different style of program-
ming than does dynamic type checking and method invocation. For example, a Simula or C++ class speci-
fies a fixed interface to a set of objects (of any derived class) whereas a Smalltalk class specifies an initial
set of operations for objects (of any subclass). In other words, a Smalltalk class is a minimal specification
and the user is free to try operations not specified whereas a C++ class is an exact specification and the user
is guaranteed that only operations specified in the class declaration will be accepted by the compiler.

Inheritance
Consider a language having some form of method lookup without having an inheritance mechanism.

Could that language be said to support object-oriented programming? I think not. Clearly, you could do
interesting things with the method table to adapt the objects’ behavior to suit conditions. However, to
avoid chaos, there must be some systematic way of associating methods and the data structures they assume
for their object representation. To enable a user of an object to know what kind of behavior to expect, there
would also have to be some standard way of expressing what is common to the different behaviors the
object might adopt. This ‘‘systematic and standard way’’ would be an inheritance mechanism.

Consider a language having an inheritance mechanism without virtual functions or methods. Could that
language be said to support object-oriented programming? I think not: the shape example does not have a
good solution in such a language. However, such a language would be noticeably more powerful than a
‘‘plain’’ data abstraction language. This contention is supported by the observation that many Simula and
C++ programs are structured using class hierarchies without virtual functions. The ability to express com-
monality (factoring) is an extremely powerful tool. For example, the problems associated with the need to
have a common representation of all shapes could be solved. No union would be needed. However, in the
absence of virtual functions, the programmer would have to resort to the use of ‘‘type fields’’ to determine
actual types of objects, so the problems with the lack of modularity of the code would remain†.

This implies that class derivation (subclassing) is an important programming tool in its own right. It
can be used to support object-oriented programming, but it has wider uses. This is particularly true if one
identifies the use of inheritance in object-oriented programming with the idea that a base class expresses a
general concept of which all derived classes are specializations. This idea captures only part of the expres-
sive power of inheritance, but it is strongly encouraged by languages where every member function is vir-
tual (or a method). Given suitable controls of what is inherited (see Snyder[18] and Stroustrup[19]), class
derivation can be a powerful tool for creating new types. Given a class, derivation can be used to add
and/or subtract features. The relation of the resulting class to its base cannot always be completely
described in terms of specialization; factoring may be a better term.

Derivation is another tool in the hands of a programmer and there is no foolproof way of predicting how
it is going to be used – and it is too early (even after almost 25 years of Simula) to tell which uses are sim-
ply mis-uses.

Multiple Inheritance
When a class A is a base of class B, a B inherits the attributes of an A; that is, a B is an A in addition to

whatever else it might be. Given this explanation it seems obvious that it might be useful to have a class B
inherit from two base classes A1 and A2. This is called multiple inheritance[23].

A fairly standard example of the use of multiple inheritance would be to provide two library classes
displayed and task for representing objects under the control of a display manager and co-routines
under the control of a scheduler, respectively. A programmer could then create classes such as

class my_displayed_task : public displayed, public task {
// my stuff

};

class my_task : public task { // not displayed
// my stuff

};

† This is the problem with Simula’s inspect statement and the reason it does not have a counterpart in C++.

- 17 -

class my_displayed : public displayed { // not a task
// my stuff

};

Using (only) single inheritance only two of these three choices would be open to the programmer. This
leads to either code replication or loss of flexibility – and typically both. In C++ this example can be han-
dled as shown above with to no significant overheads (in time or space) compared to single inheritance and
without sacrificing static type checking[20].

Ambiguities are handled at compile time:

class A { public: void f(); /* ... */ };
class B { public: void f(); /* ... */ };
class C : public A, public B { /* ... */ };

void g(C* p)
{

p->f(); // error: ambiguous
}

In this, C++ differs from the object-oriented Lisp dialects that support multiple inheritance. In these Lisp
dialects ambiguities are resolved by considering the order of declarations significant, by considering objects
of the same name in different base classes identical, or by combining methods of the same name in base
classes into a more complex method of the highest class.

In C++, one would typically resolve the ambiguity by adding a function:

class C : public A, public B {
// ...

public:
void f();
// ...

};

void f()
{

// C’s own stuff
A::f();
B::f();

}

In addition to this straightforward concept of independent multiple inheritance there appears to be a
need for a more general mechanism for expressing dependencies between classes in a multiple inheritance
lattice. In C++, the requirement that a sub-object should be shared by all other sub-objects in a class object
is expressed through the mechanism of a virtual base class:

class W { /* ... */ }; // window

class Bwindow: public virtual W { // window with border
// ...

};

class Mwindow : public virtual W { // window with menu
// ...

};

class BMW : public Bwindow, public Mwindow {
// window with border and menu
// ...

};

Here the (single) window sub-object is shared by the Bwindow and Bwindow sub-objects of a BMW. The
Lisp dialects provide concepts of method combination to ease programming using such complicated class
hierarchies. C++ does not.

- 18 -

Encapsulation
Consider a class member (either a data member or a function member) that needs to be protected from

‘‘unauthorized access.’’ What choices can be reasonable for delimiting the set of functions that may access
that member? The ‘‘obvious’’ answer for a language supporting object-oriented programming is ‘‘all oper-
ations defined for this object,’’ that is, all member functions. A non-obvious implication of this answer is
that there cannot be a complete and final list of all functions that may access the protected member since
one can always add another by deriving a new class from the protected member’s class and define a mem-
ber function of that derived class. This approach combines a large degree of protection from accident
(since you do not easily define a new derived class ‘‘by accident’’) with the flexibility needed for ‘‘tool
building’’ using class hierarchies (since you can ‘‘grant yourself access’’ to protected members by deriving
a class). For example:

class Window {
// ...

protected:
Rectangle inside;
// ...

public:
// ...

};

class Dumb_terminal : Window {
// ...

public:
void prompt();
// ...

};

Here Window specifies inside as protected so that derived classes such as Dumb_terminal can read it
and figure out what part of the Window’s area it may manipulate.

Unfortunately, the ‘‘obvious’’ answer for a language oriented towards data abstraction is different: ‘‘list
the functions that need access in the class declaration.’’ There is nothing special about these functions. In
particular, they need not be member functions. A non-member function with access to private class mem-
bers is called a friend in C++. Class complex above was defined using friend functions. It is some-
times important that a function may be specified as a friend in more than one class. Having the full list
of members and friends available is a great advantage when you are trying to understand the behavior of a
type and especially when you want to modify it.

Encapsulation issues increase dramatically in importance with the size of the program and with the
number and geographical dispersion of its users. See Snyder[18] and Stroustrup[19] for more detailed dis-
cussions of language support for encapsulation.

Implementation Issues
The support needed for object-oriented programming is primarily provided by the run-time system and

by the programming environment. Part of the reason is that object-oriented programming builds on the lan-
guage improvements already pushed to their limit to support for data abstraction so that relatively few addi-
tions are needed†.

The use of object-oriented programming blurs the distinction between a programming language and its
environment further. Since more powerful special- and general-purpose user-defined types can be defined
their use pervades user programs. This requires further development of both the run-time system, library
facilities, debuggers, performance measuring, monitoring tools, etc. Ideally these are integrated into a uni-
fied programming environment. Smalltalk is the best example of this.

† This assumes that an object-oriented language does indeed support data abstraction. However, the support for data abstraction is
often deficient in such languages. Conversely, languages that support data abstraction are typically deficient in their support of object-
oriented programming.

- 19 -

5 Limits to Perfection

A major problem with a language defined to exploit the techniques of data hiding, data abstraction, and
object-oriented programming is that to claim to be a general purpose programming language it must

[1] Run on traditional machines.
[2] Coexist with traditional operating systems.
[3] Compete with traditional programming languages in terms of run time efficiency.
[4] Cope with every major application area.

This implies that facilities must be available for effective numerical work (floating point arithmetic without
overheads that would make Fortran appear attractive), and that facilities must be available for access to
memory in a way that allows device drivers to be written. It must also be possible to write calls that con-
form to the often rather strange standards required for traditional operating system interfaces. In addition, it
should be possible to call functions written in other languages from a object-oriented programming lan-
guage and for functions written in the object-oriented programming language to be called from a program
written in another language.

Another implication is that an object-oriented programming language cannot completely rely on mecha-
nisms that cannot be efficiently implemented on a traditional architecture and still expect to be used as a
general purpose language. A very general implementation of method invocation can be a liability unless
there are alternative ways of requesting a service.

Similarly, garbage collection can become a performance and portability bottleneck. Most object-
oriented programming languages employ garbage collection to simplify the task of the programmer and to
reduce the complexity of the language and its compiler. However, it ought to be possible to use garbage
collection in non-critical areas while retaining control of storage use in areas where it matters. As an alter-
native, it is feasible to have a language without garbage collection and then provide sufficient expressive
power to enable the design of types that maintain their own storage. C++ is an example of this.

Exception handling and concurrency features are other potential problem areas. Any feature that is best
implemented with help from a linker can become a portability problem.

The alternative to having ‘‘low level’’ features in a language is to handle major application areas using
separate ‘‘low level’’ languages.

6 Conclusions

Object-oriented programming is programming using inheritance. Data abstraction is programming
using user-defined types. With few exceptions, object-oriented programming can and ought to be a super-
set of data abstraction. These techniques need proper support to be effective. Data abstraction primarily
needs support in the form of language features and object-oriented programming needs further support from
a programming environment. To be general purpose, a language supporting data abstraction or object-
oriented programming must enable effective use of traditional hardware.

7 Acknowledgements

An earlier version of this paper was presented to the Association of Simula Users meeting in Stock-
holm. The discussions there caused many improvements both in style and contents. Brian Kernighan and
Ravi Sethi made many constructive comments. Also thanks to all who helped shape C++.

8 References

[1] Birtwistle, Graham et.al.: SIMULA BEGIN. Studentlitteratur, Lund, Sweden. 1971. Chartwell-
Bratt Ltd, UK. 1980.

[2] Dahl, O-J. and Hoare, C.A.R.: Hierarchical Program Structures. In Structured Programming.
Academic Press 1972.

[3] Cargill, Tom A.: PI: A Case Study in Object-Oriented Programming. SIGPLAN Notices,
November 1986, pp 350-360.

- 20 -

[4] C.C.I.T.T Study Group XI: CHILL User’s Manual. CHILL Bulletin no 1. vol 4. March 1984.

[5] Ellis, M.A and Stroustrup, B. The Annotated C++ Reference Manual. Addison-Wesley 1990.

[6] Goldberg, A. and Robson, D.: Smalltalk-80: The Language and its Implementation. Addison-
Wesley 1983.

[7] Ichbiah, J.D. et.al.: Rationale for the Design of the Ada Programming Language. SIGPLAN
Notices, June 1979.

[8] Kernighan, B.W. and Ritchie, D.M.: The C Programming Language. Prentice-Hall 1978. 2nd
Edition 1988.

[9] Keene, Sonya E.: Object-Oriented Programming in COMMON LISP Addison-Wesley 1988.

[10] Kerr, Ron: Object-Based Programming: A Foundation for Reliable Software. Proceedings of the
14th SIMULA Users’ Conference. August 1986, pp 159-165. An abbreviated version of this
paper can be found under the title A Materialistic View of the Software ‘‘Engineering’’ Analogy
in SIGPLAN Notices, March 1987, pp 123-125.

[11] Liskov, Barbara et. al.: Clu Reference Manual. MIT/LCS/TR-225, October 1979.

[12] Liskov, Barbara et. al.: Abstraction Mechanisms in Clu. CACM vol 20, no 8, August 1977, pp
564-576.

[13] Milner, Robert: A Proposal for Standard ML. ACM Symposium on Lisp and Functional Pro-
gramming. 1984, pp 184-197.

[14] Nygaard, Kristen: Basic Concepts in Object Oriented Programming. SIGPLAN Notices, October
1986, pp 128-132.

[15] Rovner, Paul: Extending Modula-2 to Build Large, Integrated Systems. IEEE Software, Vol. 3.
No. 6. November 1986, pp 46-57.

[16] Shopiro, Jonathan: Extending the C++ Task System for Real-Time Applications. Proc. USENIX
C++ Workshop, Santa Fe, November 1987.

[17] SIMULA Standards Group, 1984: SIMULA Standard. ASU Secretariat, Simula a.s. Post Box
150 Refstad, 0513 Oslo 5, Norway.

[18] Snyder, Alan: Encapsulation and Inheritance in Object-Oriented Programming Languages. SIG-
PLAN Notices, November 1986, pp 38-45.

[19] Stroustrup, Bjarne: The C++ Programming Language. Addison-Wesley, 1986. 2nd Edition
1991.

[20] Stroustrup, Bjarne: Multiple Inheritance for C++. Proceedings of the Spring’87 EUUG Confer-
ence. Helsinki, May 1987.

[21] Stroustrup, Bjarne: The Evolution of C++: 1985-1989. USENIX Computer Systems, Vol 2 No 3,
Summer 1989.

[22] Stroustrup, Bjarne: Possible Directions for C++: 1985-1987. Proc. USENIX C++ Workshop,
Santa Fe, November 1987.

- 21 -

[23] Weinreb, D. and Moon, D.: Lisp Machine Manual. Symbolics, Inc. 1981.

[24] Wirth, Niklaus: Programming in Modula-2. Springer-Verlag, 1982.

[25] Woodward, P.M. and Bond, S.G.: Algol 68-R Users Guide. Her Majesty’s Stationery Office,
London. 1974.

