
1

10 October 200210 October 2002 11

Multicast: Multicast:
ComunicaçãoComunicação emem GrupoGrupo

22

Multicast: Comunicação em Multicast: Comunicação em
GrupoGrupo

C

S

S

S

S
Um grupo é um conjunto
dinâmico/estático de
processos que é tratado
como uma entidade única.

33

Onde é útil usar Multicasting?Onde é útil usar Multicasting?

Servidores redundantes (faultServidores redundantes (fault--tolerance)tolerance)
Discovery services (spontaneous Discovery services (spontaneous
networking)networking)
Melhorar o desempenho com dados Melhorar o desempenho com dados
replicadosreplicados
Propagação de notificação de eventosPropagação de notificação de eventos

44

MCast a vários níveisMCast a vários níveis

Nível físico: EthernetNível físico: Ethernet
Nível rede: IP multicastingNível rede: IP multicasting
Sistema Operação: grupo de processosSistema Operação: grupo de processos
Middleware: Isis, Horus, ConsulMiddleware: Isis, Horus, Consul
Plataformas Publish/Subscribe.Plataformas Publish/Subscribe.

55

IP MulticastIP Multicast

Routers interpret any datagram sent to an IP Routers interpret any datagram sent to an IP
address in the range of:address in the range of:
224.0.0.0 to 239.255.255.255224.0.0.0 to 239.255.255.255 as as multicastmulticast..

Any IP application with a UDP socket can send to Any IP application with a UDP socket can send to
a multicast address, with some limitations. a multicast address, with some limitations.
Applications that join a Applications that join a multicast groupmulticast group can can
receive multicast receive multicast datagramsdatagrams sent to that group sent to that group
address. address.

66

Receiving/Sending MulticastsReceiving/Sending Multicasts

A multicast receiver application must:A multicast receiver application must:
1. Get a UDP socket. 1. Get a UDP socket.
2. Bind to the application's port number (name the socket). 2. Bind to the application's port number (name the socket).
3. Join the application's multicast address group. 3. Join the application's multicast address group.
4. Receive. 4. Receive.
5. Close the socket when complete. 5. Close the socket when complete.

A multicast sender must:A multicast sender must:
1. Get a UDP socket. 1. Get a UDP socket.
2. Set the IP Time2. Set the IP Time--ToTo--Live appropriately. Live appropriately.
3. Send to the application's multicast address and port number. 3. Send to the application's multicast address and port number.
4. Close the socket when complete. 4. Close the socket when complete.

//The sender does not have to join a multicast group. //The sender does not have to join a multicast group.

2

77

IP MulticastIP Multicast

When a multicast message arrives at a When a multicast message arrives at a
computer, copies are forwarded to all of computer, copies are forwarded to all of
the local sockets that have joined the the local sockets that have joined the
specific multicast address and the specific multicast address and the
specified port number.specified port number.
The membership of multicast groups is The membership of multicast groups is
dynamic: member can join and leave dynamic: member can join and leave
whenever they want.whenever they want.
IP multicast is available only via UDP.IP multicast is available only via UDP.

88

Multicast RoutersMulticast Routers

IP packets can be multicasted on a local IP packets can be multicasted on a local
network and on the wider Internet.network and on the wider Internet.
Local multicasts make use of the hardware Local multicasts make use of the hardware
multicast feature of Ethernet (single multicast feature of Ethernet (single
message).message).
Internet multicasts make use of multicast Internet multicasts make use of multicast
routers, which forward single datagrams routers, which forward single datagrams
to routers on other networks with to routers on other networks with
members, where they are again hardware members, where they are again hardware
multicasted to local members.multicasted to local members.

99

TTL: timeTTL: time--toto--livelive

To limit the distance of propagation of a To limit the distance of propagation of a
multicast datagram, the sender specifies multicast datagram, the sender specifies
the number of routers it is allowed to the number of routers it is allowed to
pass: pass:

TimeTime--toto--LiveLive TTLTTL

The default value is 1.The default value is 1.
This allows the multicast propagate This allows the multicast propagate
only on the local network.only on the local network.

1010

Multicast Address AllocationMulticast Address Allocation

Permanent Multicast Groups:Permanent Multicast Groups:
224.0.0.1 224.0.0.255224.0.0.1 224.0.0.255

Temporary Groups:Temporary Groups:
225.0.0.1 225.0.0.1 239.255.255.255239.255.255.255

1111

Temporary Multicast GroupTemporary Multicast Group

When a multicast group is created it requires a When a multicast group is created it requires a
free multicast address to avoid accidental free multicast address to avoid accidental
participation in an existing group.participation in an existing group.
The IP multicast protocol does not address this The IP multicast protocol does not address this
issue.issue.
When the users only need to communicate locally When the users only need to communicate locally
they set the TTL to a small value.they set the TTL to a small value.
However, programs using IP multicasting over the However, programs using IP multicasting over the
Internet require a solution to the problem Internet require a solution to the problem
(directory of multicast sessions).(directory of multicast sessions).

1212

Internet MulticastingInternet Multicasting
Most providers of push media currently use Most providers of push media currently use unicastunicast to to
deliver content to their customers. This means that each deliver content to their customers. This means that each
server sends content to each listener in a stream of server sends content to each listener in a stream of
individually addressed individually addressed datagramsdatagrams. .
This works, but does not scale well.This works, but does not scale well.

MulticastMulticast allows a content provider to send a single allows a content provider to send a single
datastreamdatastream to a single address, a to a single address, a datastreamdatastream that that
network routers subsequently distribute to as many network routers subsequently distribute to as many
receivers as desired. receivers as desired.
Multicast Multicast requires no additional effort on the part of requires no additional effort on the part of
the sender to add new receivers, since the network the sender to add new receivers, since the network
handles the distribution from the single handles the distribution from the single datastreamdatastream. .

3

1313

OneOne--toto--Many MulticastingMany Multicasting

RealReal--time data distribution (weather, time data distribution (weather,
stocks, telemetry, and remote sensing);stocks, telemetry, and remote sensing);
File distribution (software updates, File distribution (software updates,
database mirrors, and web caching);database mirrors, and web caching);
Cryptographic key distribution;Cryptographic key distribution;
Network management;Network management;
System configuration;System configuration;

1414

OneOne--toto--Many MulticastMany Multicast

1515

ManyMany--toto--Many MulticastingMany Multicasting

Conferencing (video, audio, and Conferencing (video, audio, and
whiteboard sharing);whiteboard sharing);
Collaborative document sharing;Collaborative document sharing;
Interactive distance learning;Interactive distance learning;
Virtual reality Virtual reality

1616

ManyMany--toto--ManyMany

1717

Multicast Datagram SocketMulticast Datagram Socket

The multicast datagram socket class is useful for The multicast datagram socket class is useful for
sending and receiving IP multicast packets. sending and receiving IP multicast packets.
A A MulticastSocketMulticastSocket is a (UDP) is a (UDP) DatagramSocketDatagramSocket, ,
with additional capabilities for joining "groups" with additional capabilities for joining "groups"
of other multicast hosts on the Internet. of other multicast hosts on the Internet.
A multicast group is specified by a class D IP A multicast group is specified by a class D IP
address and by a standard UDP port number. address and by a standard UDP port number.
Class D IP addresses are in the range: Class D IP addresses are in the range:
224.0.0.0 to 239.255.255.255.224.0.0.0 to 239.255.255.255.

1818

Multicast peer joins a group and Multicast peer joins a group and
sends and receives sends and receives datagramsdatagrams

import java.net.*;
import java.io.*;

public class MulticastPeer{
public static void main(String args[]){

// args give message contents & destination multicast group (e.g. "228.5.6.7")

MulticastSocket s =null;
try {

InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
s.joinGroup(group);

byte [] m = args[0].getBytes();
DatagramPacket messageOut =

new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);

// this figure continued on the next slide

4

1919

Exemplo (cont).Exemplo (cont).
// get messages from others in group

byte[] buffer = new byte[1000];
for(int i=0; i< 3; i++) {

DatagramPacket messageIn =
new DatagramPacket(buffer, buffer.length);

s.receive(messageIn);
System.out.println("Received:" + new

String(messageIn.getData()));
}
s.leaveGroup(group);

}catch (SocketException e){System.out.println("Socket: " +
e.getMessage());

}catch (IOException e){System.out.println("IO: " +
e.getMessage());}
}finally {if(s != null) s.close();}
}

} 2020

Ex: Receiving SocketEx: Receiving Socket
import import sun.netsun.net.*; .*;
import import java.netjava.net.*; .*;
intint port = 5000; port = 5000;
group = "225.4.5.6";group = "225.4.5.6";
// Create the socket and bind it to port 'port'. // Create the socket and bind it to port 'port'.
MulticastSocketMulticastSocket s = new s = new MulticastSocket(portMulticastSocket(port););
// join the multicast group // join the multicast group
s.joinGroup(InetAddress.getByName(groups.joinGroup(InetAddress.getByName(group));));
// Now the socket is set up and we are ready to receive packets // Now the socket is set up and we are ready to receive packets
byte byte bufbuf[] = byte[1024]; [] = byte[1024];
DatagramPacketDatagramPacket pack = new pack = new DatagramPacket(bufDatagramPacket(buf, , buf.lengthbuf.length););
s.receive(packs.receive(pack););
// Do something useful with the data we just received, // Do something useful with the data we just received,
System.out.println("ReceivedSystem.out.println("Received data from: " + data from: " + pack.getAddress().toStringpack.getAddress().toString() + ":" + () + ":" +

pack.getPortpack.getPort() + " with length: " + () + " with length: " + pack.getLengthpack.getLength()); ());
System.out.write(pack.getData(),0,pack.getLength()); System.out.write(pack.getData(),0,pack.getLength()); System.out.printlnSystem.out.println(); ();

// And when we have finished receiving data leave the multicast // And when we have finished receiving data leave the multicast group and close the group and close the
socketsocket

s.leaveGroup(InetAddress.getByName(groups.leaveGroup(InetAddress.getByName(group););
s.closes.close(); ();

2121

Ex: Sending SocketEx: Sending Socket
import import sun.netsun.net.*; .*;
import import java.netjava.net.*; .*;
// Which port should we send to // Which port should we send to
intint port = 5000; port = 5000;
// Which address // Which address
String group = "225.4.5.6"; String group = "225.4.5.6";
// Which // Which ttlttl
intint ttlttl = 1; = 1;
// Create the socket but we don't bind it as we are only going t// Create the socket but we don't bind it as we are only going to send data o send data
MulticastSocketMulticastSocket s = new s = new MulticastSocketMulticastSocket(); ();
// We don't have to join the multicast group if we are only send// We don't have to join the multicast group if we are only sending data and not ing data and not

receiving receiving
// Fill the buffer with some data // Fill the buffer with some data
byte byte bufbuf[] = byte[10]; [] = byte[10];
for (for (intint i=0; i<i=0; i<buf.lengthbuf.length; i++) ; i++)

buf[ibuf[i] = (] = (byte)ibyte)i; ;
// Create a // Create a DatagramPacketDatagramPacket
DatagramPacketDatagramPacket pack = new pack = new DatagramPacket(bufDatagramPacket(buf, , buf.lengthbuf.length, ,

InetAddress.getByName(groupInetAddress.getByName(group), port), port););
// Do a send. Note that send takes a byte for the // Do a send. Note that send takes a byte for the ttlttl and not an int. and not an int.
s.send(pack,(byte)ttls.send(pack,(byte)ttl););
// And when we have finished sending data close the socket // And when we have finished sending data close the socket
s.closes.close(); ();

2222

Java: Objectos/Métodos para Java: Objectos/Métodos para
usar Multicastingusar Multicasting

MulticastSocketMulticastSocket(); Create a multicast socket.(); Create a multicast socket.
MulticastSocketMulticastSocket(int(int port); Create a multicast socket in a specific port); Create a multicast socket in a specific

port.port.

intint getTimeToLivegetTimeToLive(); Get the default time(); Get the default time--toto--live for multicast live for multicast
packets.packets.

void void joinGroupjoinGroup((InetAddressInetAddress mcastaddrmcastaddr); Joins a multicast group.); Joins a multicast group.

void void leaveGroupleaveGroup((InetAddressInetAddress mcastaddrmcastaddr);); Leave a multicast Leave a multicast
group.group.

void void sendsend((DatagramPacketDatagramPacket p, bytep, byte ttlttl); Sends a datagram packet); Sends a datagram packet
to the destination, with a TTL (timeto the destination, with a TTL (time-- toto--live).live).

void void setTimeToLivesetTimeToLive(int(int ttlttl); Set the default time); Set the default time--toto--live for live for
multicast packets.multicast packets.

2323

Joining/Leaving Mcast GroupsJoining/Leaving Mcast Groups

When one sends a message to a multicast group, When one sends a message to a multicast group, allall
subscribing recipients to that host and port receive the subscribing recipients to that host and port receive the
message (within the timemessage (within the time--toto--live range of the packet).live range of the packet).
The socket needn't be a member of the multicast group The socket needn't be a member of the multicast group
to send messages to it. to send messages to it.
When a socket subscribes to a multicast group/port, it When a socket subscribes to a multicast group/port, it
receives receives datagramsdatagrams sent by other hosts to the sent by other hosts to the
group/port, as do all other members of the group and group/port, as do all other members of the group and
port. port.
A socket relinquishes membership in a group by the A socket relinquishes membership in a group by the
leaveGroup(InetAddressleaveGroup(InetAddress addraddr) method.) method.
Multiple Multiple MulticastSocket'sMulticastSocket's may subscribe to a may subscribe to a
multicast group and port concurrently, and they will all multicast group and port concurrently, and they will all
receive group receive group datagramsdatagrams. .

2424

Failure ModelFailure Model

Datagram multicasts have the same failure Datagram multicasts have the same failure
characteristics as UDP datagrams: characteristics as UDP datagrams:

messages can be lost, messages can be lost,
arrive outarrive out--ofof--order, order,
can be duplicated...can be duplicated...

Thereby, with IP mcast we have the Thereby, with IP mcast we have the
following semantics: following semantics: Unreliable MulticastUnreliable Multicast

5

2525

Reliability Semantics of Reliability Semantics of
MulticastMulticast

00--reliablereliable
11--reliablereliable
mm--outout--n reliablen reliable
AllAll--reliablereliable

2626

How to achieve 1How to achieve 1--Reliable?Reliable?

Example: read data from replicated servers

2727

How to achieve mHow to achieve m--outout--n n
Reliable?Reliable?

Example: voting system 2828

How to achieve AllHow to achieve All--Reliable?Reliable?

Example: updating replicated data...

Better Algorithm?...

2929

Reliable Multicast: using oneReliable Multicast: using one--
toto--one reliable messagesone reliable messages

BB--Multicast(g,m): // mcast message m to a group gMulticast(g,m): // mcast message m to a group g

for each process p € gfor each process p € g
reliablereliable--send(p,m)send(p,m)

On receive(m) at p: BOn receive(m) at p: B--deliver(m) at pdeliver(m) at p

This implementation uses threads to perform the send operations This implementation uses threads to perform the send operations
concurrently (scalability problems...)concurrently (scalability problems...)
The large number of oneThe large number of one--toto--one and ack messages may lead to one and ack messages may lead to
some buffer overflow problems...some buffer overflow problems...
Inefficient use of the network...Inefficient use of the network...

3030

Reliable Multicast over IP Reliable Multicast over IP
MulticastMulticast

IPIP--multicast is successful in most cases...multicast is successful in most cases...
Use negative acknowledgements to indicate nonUse negative acknowledgements to indicate non--
delivery.delivery.
Use piggyback acknowledgements in messages.Use piggyback acknowledgements in messages.

Each process (p) maintains a sequence number (SEach process (p) maintains a sequence number (Sgg
pp) for) for

each group (g) that is belongs to.each group (g) that is belongs to.
SSgg

pp := 0;:= 0;
Each process also records REach process also records Rgg

qq, the sequence number of , the sequence number of
the latest message it has delivered from process (q) that the latest message it has delivered from process (q) that
was sent to group (g).was sent to group (g).

Algorithm

6

3131

ReliableReliable--IPIP--MulticastMulticast

Process Process pp RR--MulticastMulticast message message mm to to
group group g:g:
increment Sincrement Sgg

pp by 1by 1
piggybackpiggyback in to the messagein to the message

SSgg
pp

ack <q,Rack <q,Rgg
pp> for all q> for all q

IPIP--multicast message and piggyback multicast message and piggyback
informationinformation

3232

Delivery of Multicast MessagesDelivery of Multicast Messages

RR--DeliverDeliver message from p:message from p:
Only if received sequence number S = ROnly if received sequence number S = Rgg

pp

+ 1+ 1
Then increment RThen increment Rgg

pp by 1by 1
Retain any message that cannot yet be Retain any message that cannot yet be
delivered in delivered in holdhold--backback--queuequeue

3333

HoldHold--Back Queue for Arriving Back Queue for Arriving
MessagesMessages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

3434

Reliable DeliveryReliable Delivery

RR--Deliver message from p:Deliver message from p:
If S <= RIf S <= Rgg

pp, ,
then message is already delivered, then message is already delivered,

discarddiscard
If S > RIf S > Rgg

pp or R > Ror R > Rgg
qq for any enclosed for any enclosed

acknowledgement <q,R> , then receiver acknowledgement <q,R> , then receiver
has missed one or more messages. It has missed one or more messages. It
should request a retransmission of that should request a retransmission of that
message through a message through a negative negative
acknowledgmentacknowledgment..

3535

Properties of this RProperties of this R--Multicast Multicast
ProtocolProtocol

IntegrityIntegrity (detection of duplicates)(detection of duplicates)
ValidityValidity (message lost can only be (message lost can only be
detected when a sucessor message is detected when a sucessor message is
eventually transmitted; requires processes eventually transmitted; requires processes
to multicast messages indefinitely)to multicast messages indefinitely)
Agreement Agreement (required unbounded history (required unbounded history
of broadcast messages so that retransmit of broadcast messages so that retransmit
is always possible).is always possible).
These two last assumptions cannot be These two last assumptions cannot be
practical...practical...

