Multicast:
Comunicacao em Grupo

10 October 2002 1

Multicast: Comunicacao em
Grupo

_—%
.\o

Um grupo é um conjunto

dindmico/estético de .
processos que € tratado

como uma entidade Unica.

Onde é util usar Multicasting?

m Servidores redundantes (fault-tolerance)

m Discovery services (spontaneous
networking)

m Melhorar o desempenho com dados
replicados

m Propagacao de notificacdo de eventos

MCast a varios niveis

m Nivel fisico: Ethernet

m Nivel rede: IP multicasting

m Sistema Operacao: grupo de processos
m Middleware: Isis, Horus, Consul

m Plataformas Publish/Subscribe.

IP Multicast

m Routers interpret any datagram sent to an IP
address in the range of:
224.0.0.0 to 239.255.255.255 as multicast.

m Any IP application with a UDP socket can send to
a multicast address, with some limitations.

m Applications that join a multicast group can
receive multicast datagrams sent to that group
address.

Receiving/Sending Multicasts

A multicast receiver application must:

1. Get a UDP socket.

2. Bind to the application's port number (name the socket).
3. Join the application's multicast address group.

4. Receive.

5. Close the socket when complete.

A multicast sender must:

1. Get a UDP socket.

2. Set the IP Time-To-Live appropriately.

3. Send to the application's multicast address and port number.
4. Close the socket when complete.

//The sender does not have to join a multicast group.

IP Multicast

m When a multicast message arrives at a
computer, copies are forwarded to all of
the local sockets that have joined the
specific multicast address and the
specified port number.

m The membership of multicast groups is
dynamic: member can join and leave
whenever they want.

m IP multicast is available only via UDP.

Multicast Routers

m IP packets can be multicasted on a local
network and on the wider Internet.

m Local multicasts make use of the hardware
multicast feature of Ethernet (single
message).

m Internet multicasts make use of multicast
routers, which forward single datagrams
to routers on other networks with
members, where they are again hardware
multicasted to local members.

TTL: time-to-live

m To limit the distance of propagation of a
multicast datagram, the sender specifies
the number of routers it is allowed to
pass:

Time-to-Live TTL

m The default value is 1.

m This allows the multicast propagate
only on the local network.

Multicast Address Allocation

m Permanent Multicast Groups:
224.0.0.1 224.0.0.255

= Temporary Groups:
225.0.0.1 239.255,255.255

Temporary Multicast Group

m When a multicast group is created it requires a
free multicast address to avoid accidental
participation in an existing group.

m The IP multicast protocol does not address this
issue.

m When the users only need to communicate locally
they set the TTL to a small value.

m However, programs using IP multicasting over the
Internet require a solution to the problem
(directory of multicast sessions).

Internet Multicasting

m Most providers of push media currently use unicast to
deliver content to their customers. This means that each
server sends content to each listener in a stream of
individually addressed datagrams.

m This works, but does not scale well.

m Multicast allows a content provider to send a single
datastream to a single address, a datastream that
network routers subsequently distribute to as many
receivers as desired.

m Multicast requires no additional effort on the part of
the sender to add new receivers, since the network
handles the distribution from the single datastream.

One-to-Many Multicasting

m Real-time data distribution (weather,
stocks, telemetry, and remote sensing);

m File distribution (software updates,
database mirrors, and web caching);

m Cryptographic key distribution;
m Network management;
m System configuration;

One-to-Many Multicast

o/:’
%o

Many-to-Many Multicasting

m Conferencing (video, audio, and
whiteboard sharing);

m Collaborative document sharing;
m Interactive distance learning;
m Virtual reality

Many-to-Many

/.\

<

Multicast Datagram Socket

m The multicast datagram socket class is useful for
sending and receiving IP multicast packets.

= A MulticastSocket is a (UDP) DatagramSocket,
with additional capabilities for joining "groups"
of other multicast hosts on the Internet.

m A multicast group is specified by a class D IP
address and by a standard UDP port number.

m Class D IP addresses are in the range:
224.0.0.0 to 239.255.255.255.

Multicast peer joins a group and
sends and receives datagrams

import java.net.*;
import java.io.*;

public class MulticastPeer{
public static void main(String args[1){

// args give message contents & destination multicast group (e.g. "228.5.6.7")

MulticastSocket s =null;

try {
InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
s.joinGroup(group);

byte [] m = args[0].getBytes();
DatagramPacket messageOut =
new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);
// this figure continued on the next slide

Exemplo (cont).

// get messages from others in group
byte[] buffer = new byte[1000];
for(int i=0; i< 3; i++) {
DatagramPacket messageln =
new DatagramPacket(buffer, buffer.length);
s.receive(messageln);
. System.out.printlné"Received:" + new
String(messageln.getData()));

s.leaveGroup(group);
}catch (SocketException e){System.out.printin("Socket: " +
e.getMessage());

}catch (IOException e){System.out.printin("I0: " +
e.getMessage());f

Hinally {if(s != null) s.close();}
}

Ex: Receiving Socket

import sun.net.*;

import java.net.*;

int port = 5000;

group = "225.4.5.6";

// Create the socket and bind it to port 'port'.

MulticastSocket s = new MulticastSocket(port);

// join the multicast group

s.joinGroup(InetAddress.getByName(group));

// Now the socket is set up and we are ready to receive packets

byte buf[] = byte[1024];

DatagramPacket pack = new DatagramPacket(buf, buf.length);

s.receive(pack);

// Do something useful with the data we just received,

System.out.printin("Received data from: " + pack.getAddress().toString() + ":" +
pack.getPort() + " with length: " + pack.getLength 3; X
System.out.write(pack.getData(),0,pack.getLength()); System.out.printin();

/[And \'r(vhten we have finished receiving data leave the multicast group and close the
sockel

s.leaveGroup(InetAddress.getByName(group);

s.close();

Ex: Sending Socket

import sun.net.*;

import java.net.*;

// Which port should we send to

int port = 5000;

// Which address

String group = "225.4.5.6";

// Which ttl

intttl = 1;

// Create the socket but we don't bind it as we are only going to send data
MulticastSocket s = new MulticastSocket();

// We don't have to join the multicast group if we are only sending data and not
receiving

// Fill the buffer with some data

byte buff] = byte[10];

for (int i=0; i<buf.length; i++)
buffi] = (byte)i;

// Create a DatagramPacket

DatagramPacket pack = new DatagramPacket(buf, buf.length,
InetAddress.getByName(group), port);

// Do a send. Note that send takes a byte for the ttl and not an int.
s.send(pack, (byte)ttl);
// And when we have finished sending data close the socket

s.close();

Joining/Leaving Mcast Groups

m When one sends a message to a multicast group, all
subscribing recipients to that host and port receive the
message (within the time-to-live range of the packet).

m The socket needn't be a member of the multicast group
to send messages to it.

m When a socket subscribes to a multicast group/port, it
receives datagrams sent by other hosts to the
group/port, as do all other members of the group and
port.

m A socket relinquishes membership in a group by the
leaveGroup(InetAddress addr) method.

= Multiple MulticastSocket's may subscribe to a
multicast group and port concurrently, and they will all
receive group datagrams.

Java: Objectos/Métodos para
usar Multicasting

19 7210) D)

S IVEN LYY

Failure Model

m Datagram multicasts have the same failure
characteristics as UDP datagrams:
messages can be lost,
arrive out-of-order,
can be duplicated...

m Thereby, with IP mcast we have the
following semantics: Unreliable Multicast

Reliability Semantics of

Multicast
m O-reliable
m 1-reliable
m m-out-n reliable
m All-reliable

How to achieve 1-Reliable?
O
0<’
O
O

\

Example: read data from replicated setvers

How to achieve m-out-n
Reliable?

AN

|

Example: voting system 2

How to achieve All-Reliable?

\

. Better Algorithm?...

28

Example: updating replicated data...

Reliable Multicast: using one-
to-one reliable messages

m B-Multicast(g,m): // mcast message m to a group g

m for each process p € g
reliable-send(p,m)

B On receive(m) at p: B-deliver(m) at p

= This implementation uses threads to perform the send operations
concurrently (scalability problems...)

= The large number of one-to-one and ack messages may lead to
some buffer overflow problems...
= [Inefficient use of the network...

Reliable Multicast over IP
Multicast

m IP-multicast is successful in most cases...

m Use negative acknowledgements to indicate non-
delivery.

m Use piggyback acknowledgements in messages.

B

m Each process (p) maintains a sequence number (S¢P) for
each group (g) that is belongs to.

m SP:=0;

m Each process also records R 9, the sequence number of
the latest message it has delivered from process (q) that
was sent to group (g).

Reliable-IP-Multicast

m Process p R-Multicast message m to
group g:
= increment SP by 1
= piggyback in to the message
S P
g
ack <q,R,P> for all q

= IP-multicast message and piggyback
information

Delivery of Multicast Messages

m R-Deliver message from p:

m Only if received sequence number S = RP
+1

m Then increment R P by 1

m Retain any message that cannot yet be
delivered in hold-back-queue

Hold-Back Queue for Arriving
Messages

Message
processing

*deliver

Hold-back
Delivery queue

queue
E/< When delivery

Incoming
messages

Reliable Delivery

m R-Deliver message from p:
mIfS<=Rp,
then message is already delivered,

discard

mIf S > R or R > R for any enclosed
acknowledgement <q,R> , then receiver
has missed one or more messages. It
should request a retransmission of that
message through a negative
acknowledgment. 3

Properties of this R-Multicast
Protocol

m Integrity (detection of duplicates)

m Validity (message lost can only be
detected when a sucessor message is
eventually transmitted; requires processes
to multicast messages indefinitely)

m Agreement (required unbounded history
of broadcast messages so that retransmit
is always possible).

m These two last assumptions cannot be
practical...

