
A comparison among different synchronized tree traversal algorthims for spatial joins

SANDRO DANILO GATTI 1, GEOVANE CAYRES MAGALH ÃES1,

1Institute of Computing, Univ. of Campinas - Caixa Postal 6176, 13083-970, Campinas, SP, Brasil
fgatti,geovaneg@dcc.unicamp.br

Abstract. Join techniques for spatial access methods were analysed. The factors considered included buffer pool
size, page size and intermediate join indexes ordering criteria. This analysis was based on real data taken from
a GIS applications for telecommunications. Results of this work assess the way those factors affect spatial join
performance and can be used for tuning such algorithms.

1 Introduction

We all have seen the great advances of informatics. New
and different applications arise every day, followed by the
development of faster machines and sofisticated software.
In this context, we have geographic applications applied in
areas such as precision agriculture, urban planning, utlities,
and so on. These applications are assisted by Geographic
Information Systems (GIS), which deals with spatial data.

Spatial data have characteristics that make them dif-
ferent from conventional data. That urges the development
and tuning of algorithms that manage and use these data
efficiently. Among these algorithms and operations, spatial
joins can be included.

This work aims to evaluate some spatial join proposals
taken into consideration on buffer pool and page sizes, as
well as intermediate join indexes ordering criteria, which
affect enormously spatial joins performance. It takes the
R�-tree as the base index technique.

This paper is organized as follows: section 2 presents
works that influence this investigation; section 3 presents
a description of the system used in the tests, the analysis
criteria and the data used; the section 4 presents the results
obtained in this work, as well as some discussions; and fi-
nally, the section 5 presents the conclusions of this work.

2 Related works

2.1 Spatial access methods

Many spatial access methods have been proposed and can
be classified on different ways [1, 2]. This works takes as
its base the R�-tree [3], an evolution of Guttman’s R-trees
[4].

R-tree are indexing structures derived from B-trees.
Within the R-trees, the space is hierarchically divided in-
to regions, with the lower levels regions being enclosed by
higher ones. Regions are modelled by minimum bounding
rectangles (MBR). Basically, R-trees have two kinds of n-
odes:

obj 1

obj 2

obj 3 R 1

obj 7

obj 8

obj 9

obj 10

R 3

pt 1

R 2

obj 4

obj 5

obj 6

obj 1 obj 2 obj 3 obj 7 obj 8 obj 9 obj 10obj 7 obj 8 obj 9 obj 10obj 1 obj 2 obj 3

R1 R2 R3

obj 4 obj 5 obj 6obj 4 obj 5 obj 6 pt 1

(a)

(b)

Figure 1: An R-tree (a) and the indexed points and rectan-
gles (b).

� leaf nodes, which store information about the indexed
objects in the form (id, MBR), where the first field is
the object identifier and the second one is the object
MBR;

� non-leaf nodes, which contains information on the hi-
erarchy (pointer, MBR), wherepointer is a pointer to
a node of a lower level andMBR is and MBR that en-
closes the MBR of the children node.

Every node is stored in a disk page, which maximum
capacity isM entries like (pointer, MBR) or (id, MBR). The
minimum number of entries ism � M

2
.

Figure 1 shows the points and rectangles indexed by
an R-tree. Note that the MBRs that belong to the same lev-
el can intersect. This structure is used by the conventional
R-tree and by the R�-tree. The difference between R-trees
and R�-tree remains in the overflow and insertion treatment
algorithms, which, in the R�-tree implementation, try to de-
crease the MBRs overlapping and coverage areas.



2.2 Spatial join methods

After the develpment of spatial access methods, research ef-
forts turned to the develpment of more efficient algorithms
for insertion, deletion and retrieval operations. Retrieval
(query) is the most important operation, and in this class,
spatial joins deserve special attention.

Spatial joins are an important class of spatial query.
This kind of query is used to answer questions like “Which
public buildings are close to squares?” or “Which roads
cross rivers ?”.

These operations are analogous to relational joins, that
use conventional data and also demand large computational
effort. But, instead of dealing with conventional data, spa-
tial joins deal with spatial data and spatial predicates, such
as “intersection”, “inclusion”, among others.

Relational joins frequently uses the equality criteria as
the comparison predicate, while spatial join hardly uses e-
quality, using intersection among objects instead.

The predicates used on spatial joins hinders the use
of conventional joins algorithims. This is initially due to
the fact that spatial data do not have a total natural order-
ing which preserves spatial locality. Besides, conventional
joins algorithms are optimized for equality. But spatial join-
s hardly ever use equality, which makes it difficult the use
of conventional algorithms.

The researches in this area resulted in some methods,
optimized for use when there are not indexes available on
the entries, when only one entry is indexed, and when both
entries are indexed.

When there are not indexes available, it is possible to
apply a technique that uses partitioning, assigning tuples
to buckets and using a plane-sweeping technique. Meth-
ods that use this approach are the PBSM (Partition Based
Spatial-Merge Join) [5], the SSSJ (Scalable Sweeping-Ba-
sed Spatial Join) [6], theSpatial Hash-Join [7] and another
variant of this one, introduced by Zimbr˜ao in [8].

If only one of the sets is indexed, it’s possible to use an
scan-and-index approach, or to build at run-time an index
on the non-indexed set, and then run the join. Proposals
which attack this problem are theseeded-tree, presented in
[9], and theSISJ (slot index spatial join), presented in [10].

Finally, if both sets are indexed, a general join method
can be applied, tuning it to the chosen access method.
A grid-based access method could use some hashing tech-
nique and a tree-based access method could use a synchro-
nized tree traversal (STT) technique [11, 12, 13].

Spatial joins, as well as other spatial queries, can be
run in two steps:filtering, when candidates to the answer
set are chosen andrefinement, when the real shape of the
object is retrieved and evaluated against the predicate. The
approaches that should be paid attention to, when dealing
with two indexed sets, are the STT methods.

Block Manager

Method

Spatial Access

Method

Spatial Join

Libraries

Auxiliary

Buffer Pool

Manager

Database

Figure 2: The system architecture.

3 Implementation

This work emphasizes time requirements, given in terms
of I/O operations. The join methods chosen for implemen-
tation are the ones based on STT, presented in the works
presented in [11], [12] and [13].

3.1 System architeture

A modularized system was implemented in order to ease
the evaluation, which gives total control of the operation to
the researcher. It is formed by the disk abstraction mod-
ule (DAM), the spatial join module (SJM), the index mod-
ule (IM) and the auxiliary libraries modules (ALM). These
modules were implemented in the C language and the tests
were run on a SUN SparcStation 20, with 128 megabytes
of memory.

The index and disk abstraction modules where reused,
with some modifications, from previous works [2, 14]. The
system architecture is shown in Figure 2.

The DAM is the responsible for the interface between
the system and the SJM, the IM and the operating system.
It also controls a buffer pool and parameters such as buffer
pool size, page size, amount of pages to be pinned in the
buffer pool and page replacement policies. The IM keeps
the indexing and data handling. Currently, our work uses
R�-trees, but can also incorporate other indexing methods.

The SJM includes three spatial join methods: thenest-
ed loop (NL) [11], a depth-first (DF) [12], and abreadth-
first (BF) [13]. The ALM keeps auxiliary functions, such
as sorting, list manipulation, and other operations.

3.2 The data

The data used in our work is a real data set, obtained f-
rom SAGRE Project (Sistema Automatizado de Gerˆencia
de Rede Externa) [15, 16, 17], developed by the Centro de
Pesquisa e Desenvolvimento (CPqD). This system automa-
tizes processes related to management, planning, designing,
expansion, among other operations, of an outside telecom-
munication network. The data sets are representative to ap-



Figure 3: MBRs referring tocity set.

plications such as power distribuition facilities, telephony,
water distribution facilites, and others.

These data sets are constituted basically by a sequence
of double float elements. Every four doubles form a M-
BR in the form(xmin; ymin; xmax; ymax). These data are
kept in three different sets: the first contains points, named
poles, the second contains rectangles, namedblocks and the
third contains points and rectangles, namedcity. Figure 3
shows a graphical representation of thecity data set.

The poles set contains 13,813 MBRs, theblocks set
contains 2,473 MBRs and thecity contains 66.837 MBRs,
which includes thepoles andblocks sets and also elements
such as manholes, cables, pipelines, and others.

The data sets have non-uniform distribution and sizes.
The city data set have a high density. These sets were in-
dexed into three distinct R�-trees, one for thepoles set, oth-
er for theblocks set and another for thecity set. For each
set, we have trees with the following page sizes:1k, 2k, 4k
e 8 kbytes.

3.3 Tested queries

All the queries were set to run a join between thepoles and
theblocks sets, which page sizes varying among1k, 2k, 4k
e 8 kbytes. Buffer pool sized varied among 2, 4, 8, 16, 24
e 32 pages. Different ordering criteria were used to sort the
intermediate join indexes (IJI): an ordering byz curve (SZ),
and the ordering obtained by the plane-sweeping technique
for the DF method; the ordering obtained by the plane-
sweeping technique (NS), sorting byxmin of one of the
entries (SO), sorting by the sum of thex centers of the in-
terction MBRs (SS), sorting by thex center of the MBR
that encloses the intersecting MBRs (SC), and an ordering
by a Hilbert curve (SH).

Every query was run 10 times, computing the average
CPU time, from the same initial conditions. The buffer re-
placement policy was LRU (least recently used).

Other tests were also done, running a join between
blocks � blocks andcity � city. For these last queries, the
buffer pool size varied from 2 to 256 disk pages.

4 Discussion and results

The results of this work are presented now, divided into
CPU results, memory usage, and I/O results. Except when
explicitly mentioned, all the results were obtained from the
poles � blocks join.

4.1 CPU time and main memory usage

CPU time is not our main interest. But some measures were
done in order to check the influence of the IJI ordering cri-
teria and disk page size in spatial join performance. Fi-
gure 4 (a) shows a comparison between the three methods,
not considering ordering times, while Figures 4 (b) and (c)
shows the results for the DF and BF methods with sorting,
respectively.

From the experiments related to CPU, we can see that
all the methods are influenced by page size. This is due to
the fact that, with smaller pages, the tree is higher and the
nodes MBRs enclose a smaller area, containing less ele-
ments.

It’s also possible to see thatplane-sweeping techniques
contribute to reduce de CPU time spent by the BF and DF
methods, compared to the NL method. On the other hand,
the use of sorting increased the CPU time, mainly in the BF
method, which has to deal with large IJIs.

It is important to say that the BF method used much
more memory than the other methods in order to store the
IJIs, mainly when used 1 kbyte and 4 kbytes page. This
also justifies the peaks shown for the BF curves for 1 kbyte
and 4 kbytes pages, the page sizes for which the IJIs had
the largest sizes.

4.2 I/O operations

We present now the results for the I/O operations obtained
by the NL, DF and BF methods. The NL method was the
worst one when runningpoles � blocks. But it’s useful in
order to compare the gains we may have with some policies.

4.2.1 Results for DF method

The Figure 5 shows the results for the DF method, com-
paring with the results of the NL method. Although not
shown here, the results for 1 kbyte and 2 kbytes pages re-
flect these results. It’s possible to see that the improvements
introduced resulted into better performance.



2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

C
PU

 T
im

e 
(s

eg
)

Page size (Kbytes)

CPU time for the three method, no ordering

BF no ordering
DF no ordering

NL

(a) CPU time not considering ordering time

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8

C
PU

 T
im

e 
(s

eg
)

Page Size (Kbytes)

Depth−First Join

NS
SZ

(b) CPU time for DF method

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8

C
PU

 T
im

e 
(s

eg
)

Page Size (Kbytes)

Breadth−first join

NS
SC
SH
SS
SO

(c) CPU time for BF method

Figure 4: CPU time spent by the different methods and a
comparison among them.

0

500

1000

1500

2000

2500

5 10 15 20 25 30

Pa
ge

 F
au

lts

Buffer Size in Pages

Depth−First Join (4 kbytes page)

NL
DF with NS
DF with SZ

(a) 4 kbyte page

120

140

160

180

200

220

240

260

280

300

320

5 10 15 20 25 30

Pa
ge

 F
au

lts

Buffer Size in Pages

Depth−First Join (8 Kbytes page)

NL
DF with NS
DF with SZ

(b) 8 kbyte page

Figure 5: Results for the DF method, using indexes on 4
kbytes (a) e 8 kbytes (b).



1000

2000

3000

4000

5000

6000

7000

8000

5 10 15 20 25 30

Pa
ge

 F
au

lt

Buffer Size in Pages

Breadth−First Join (1 Kbyte Page)

NS
SC
SO
SS
SH

DF SZ

(a) 1 kbyte page

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30

Pa
ge

 F
au

lt

Buffer Size in Pages

Breadth−First Join (2 Kbytes Page)

NS
SC
SO
SS
SH

DF SZ

(b) 2 kbyte page

Figure 6: Results BF method 1 kbytes (a) e 2 kbytes (b)
pages.

But, opposite to Brinkhoff et al. [12], we believe that
it’s possible the use of the z curve in order to sort the IJI. In
their work, Brinkhoff et al. said that the gain in terms of I/O
operations did not paid the extra CPU expenses when sort-
ing by z curve. But today we have faster machines and ca-
pable of handling the extra workload of z curve sorting by,
so that the gap between the expenses of NS and SZ would
be very small or vanish.

4.2.2 Results BF method

The BF method, more than the DF method, is highly influ-
enced by the order the pairs are place in the IJI. The results
of the BF tests for 1 kbyte and 2 kbytes can be seen in Figure
6, comparing to DF method with SZ.

The best ordering criteria for the BF method was SO,
mainly when we have indexes with different heights. In op-
posit to the DF method, the BF method was able to read

all the needed pages just once. This is due to this method
nature: it’s possible to know all the pages that are neces-
sary to the join in advance, allowing a better ordering of the
IJI. On the other hand, this method demanded much more
memory than the DF method. And, according to the size
of this IJI, it would be necessary to store parts of it in the
disk, what causes more accesses to disk and could nullify
the benefits of this method. Just to have an idea of how big
the IJI can be, some experiments generated IJIs with 70.7%
of the index size.

4.2.3 Other results

In addition to the experiments shown tests, others were run.
These tests were blocks� blocks (BB) and city� city (CC).
The results for BB tests are according to the ones already
presented here. On the other hand, the CC for DF tests
diverged from these ones.

With CC tests, the NL method was superior to the DF
method, considering I/O results. The BF method was still
the best concerning this criteria, but when the buffer pool
was relatively small, NL was better.

These results can be caused by the difference of sizes
and distribution of the city set. Some analysis were done
and they show that there are some MBRs that cover great
part of data space (Figure 3). These large MBRs results in-
to large intermediate MBRs, which spread to higher level,
increasing the overlapping among internal node. This is di-
rectly related to the data insertion routine in the index: if the
insertion routine generates internal levels with high overlap,
it will affect performance of all the queries. But, in order to
know, without doubts, the real cause of this anomaly, oth-
er experiments should be performed, with data of several
configurations, what will be the target for new tests.

5 Conclusions

The results of these test lead us to conclude that:

� the increase of page size results the increase of CPU
workload. So, the increase of a page size should be
followed by improvement of the plane-sweeping algo-
rithms;

� a good ordering of the IJI is very important to the good
performance of the join. In our tests, the best were SZ
for DF and SO for BF;

� a good performance of spatial joins also depends on a
buffer pool with a good proportion of pages. In our
tests, a buffer with good proportion was about 10% or
more of the size of the indexes in pages;

� the use of the BF algorithm can, depending on the data
density, turn into prohibitive IJI sizes;



� there are data sets where the use of the DF method
results into worse performance, in number os I/O op-
erations, than the NL method;

� insertion and manipulation routines have fundamental
importance on all kinds of queries.

In short, spatial join methods could and should be im-
proved, taking into account the factors analysed here. The
gains that the tuning of these factors can bring justify com-
pletely this work and new researches.

Acknowledgements

We would like to thank CPqD for the data sets used in this
work. Thanks also to CNPq for the financial support of this
work, through Pronex/SAI project.

References

[1] B. C. Ooi. Efficient query processing in geographic
information systems, volume 471 of Lecture Notes in
Computer Science. Springer-Verlag Inc., New York,
NY, USA, 1990.

[2] F. S. Cox and G. C. Magalhães. Implementação e
análise de métodos de acesso adados espaciais. In VII
Simpósio Brasileiro de Banco de Dados, Porto Alegre,
Maio 1992.

[3] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The R�-tree: an efficient and robust ac-
cess method for points and rectangles. In Proceeding
of the 1990 ACM SIGMOD International Conference
on Management of Data, Junho 1990.

[4] A. Guttman. R-trees: A dynamic index structure for s-
patial searching. In Proceedings of the ACM SIGMOD
Conference on Management of Data, 1984.

[5] J. Patel and D. DeWitt. Partition based spatial-
merge join. In SIGMOD, pages 259 – 270, Montreal,
Canadá, Junho 1996.

[6] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and
J. Vitter. Scalable sweeping-based spatial join. In
Proc. of the 24th VLDB Conference, New York, USA,
1998.

[7] M. Lo and C. V. Ravishankar. Spatial hash-joins. In
Proceedings of the 1996 ACM SIGMOD, SIGMOD
RECORD, pages 247–258, Montreal, Canadá, Junho
1996. ACM Press.

[8] G. Z. da Silva. Avaliação de Junções em Bancos de
Dados Espaciais. PhD thesis, COPPE/UFRJ, Rio de
Janeiro, Junho 1999.

[9] M. Lo and C. V. Ravishankar. Spatial joins using seed-
ed trees. In Proceedings of the 1994 ACM SIGMOD,
volume 23 of SIGMOD RECORD, pages 209–220.
ACM Press, Junho 1994.

[10] N. Mamoulis and D. Papadias. Integration of spa-
tial join algorithms for processing multiple inputs. In
Proc. of the ACM SIGMOD International Conference
on Management of Data, Filadéfia – Pensilvânia, Jun-
ho 1999.

[11] O. Günther. Efficient computation of spatial joins. In
International Conference on Data Engineering, pages
50–60, Los Alamitos, Ca., USA, Abril 1993. IEEE
Computer Society Press.

[12] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using R-trees. SIGMOD
Record (ACM Special Interest Group on Management
of Data), 22(2):237–246, junho 1993.

[13] Y.-W. Huang, N. J., and E. A. Rundensteiner. Spatial
joins using R-trees: Breadth-first traversal with glob-
al optimizations. In VLDB’97, Proceedings of 23rd
International Conference on Very Large Data Bases,
pages 396–405, 1997.

[14] A. P. Carneiro. Análise de desempenho de métodos de
acesso espaciais baseada em um banco de dados real.
Master’s thesis, Universidade Estadual de Campinas -
UNICAMP, 1998.

[15] G. C. Magalhães. Telecommunications outside plant
managements throughout Brazil. In Conference XX
Proceendings, Nashville, 1997.

[16] G. C. Magalhães. Projeto SAGRE. Fator GIS,
Out./Nov./Dez. 1993.

[17] G. C. Magalhães. The development of open systems
for engineering applications. In Proc. of XVII Intl.
Conference on AM/FM, Denver - Colorado, Março
1994.


