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Abstract. Raster representations of thematic and numerical spatial attributes are used very commonly in a GIS
environment  for computational simulation and analysis of  spatial processes. This paper addresses the problem
of predictions with uncertainty assessment for GIS raster representations created from a set of sample points of
spatial attributes. The realizations of a stochastic simulation inference process, over numerical attribute
samples, are used in order to infer the attribute values and related uncertainties at non-sampled spatial locations.
A case study, with elevation sample data, is presented to illustrate the concepts used in this work.

1 Introduction

GIS environment allows one to simulate and analyze
different scenarios that can be used to support decisions
made about a specific real spatial process. The main idea is
to integrate spatial data attribute representations in order to
study the spatial process in a computational environment.
The final scenarios depend on the data representations and
also on the mathematical model used to integrate them. The
attribute representations are derived from a set of attribute
samples, commonly sample points, obtained in a spatial
region of interest. Nonlinear stochastic procedures, based
on the indicator kriging approach, can be used to create
attribute representations along with uncertainty information
related to a set of estimated attribute values. The
uncertainty of each representation can be propagated to the
resulting scenarios of a spatial process modeling. The
resulting uncertainties will qualify the scenarios, or the
objects presented in the scenarios, yielding a quantitative
information of the risk assumed when a determined
scenario is chosen. In this context, this work presents a
methodology to create attribute representations, from a set
of sample points, using a nonlinear stochastic approach
called indicator simulation. Furthermore, this work shows
how to obtain uncertainty values related to the attribute
value inferences created by this methodology. Different
uncertainty metrics, based on confidence intervals, will be
addressed. A case study for an elevation sample set will be
presented to show how the methodology can be applied to

real data and how to use the uncertainty metrics in order to
qualify inferences of  numerical attribute representations.

2 The geostatistical paradigm for attribute inferences
with uncertainty assessment

From a geostatistical point of view, the distribution of a
spatial attribute in a region Α ⊂  ℜ 2 of the earth surface is
represented as a random function Z(u). For each position u
∈  Α  the attribute is considered as a random variable (RV)
that can assume different values depending on the model of
the spatial distribution of z(u), i. e., depending on its
probability distribution function (pdf). The conditional
cumulative distribution function (ccdf) of a continuous RV
Z(u), conditioned to (n) sample points z(uα), α =1,2,...,n,
can be denoted as:

                 ( )( ) ( ) ( ){ }nZProbnF |z|z; ≤= uu

A random function (RF) is a set of RVs defined over some
field of interest. A RF Z(u) is characterized by a set of all
its K-variate ccdfs and its multivariate ccdf is defined as:

From the ccdf one can derive different optimal estimates
for any unsampled value z(u) in addition to the ccdf mean,
which is the least-squares error estimate (Deutsch, 1998).
Also, the univariate ccdf of a RV is used to model
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uncertainty about the value z(u) while the multivariate ccdf
is used to model joint uncertainty about K values
z(u1),...,z(uk). Therefore, it is possible to derive various
probability intervals that can be used as uncertainty metrics.
These derivation processes will be addressed in the next
sections.

3 The ccdf determination

The ccdf of a numerical RV, or of a numerical RF, can be
obtained parametrically or non-parametrically. In the
parametrical approach, the ccdf is determined by a limited
set of statistical parameters. For example, the Gaussian ccdf
is fully determined by two parameters, the mean and the
variance of the distribution. Unfortunately it is a hard work
to find out whether the distribution of a continuous attribute
can be modeled by parametric ccdf or not. Non-
parametrical distributions are more common for spatial
attributes and can be estimated using the indicator kriging
approach that will be explained in the next section.

4 The ccdf approximation using the indicator kriging
approach

Instead of the variable Z(u), consider its binary indicator
transformation I(u;zk) defined as:

The expectation E{ I(u;zk)|(n) } yields an estimation F* for
the ccdf of Z(u) at the cutoff value zk  and conditioned to
the n sample data, i. e.:

Using a linear kriging approach, as simple or ordinary
kriging, to evaluate the expectation E defined in the above
equation, the indicator kriging of a continuous variable
aims to provide a least-squares estimate of the ccdf at cutoff
zk. A set of ccdf estimates in various cutoffs can lead to an
approximation of the full ccdf of Z(u).  Some corrections
for the follow order relation deviations:

and

must be performed to guarantee that the ccdf estimations
are between 0 and 1 and increase  monotonically. Figure 1
illustrates the fitting process of the ccdf estimation using 5
cutoff values.

Figure 1 The ccdf estimation using indicator
kriging approach with order relation corrections

5 The indicator simulation approach

Stochastic simulation, hereafter called simulation for
simplicity, is the process of drawing alternative, equally
probable, joint realizations of the component RVs from an
RF model (Deutsch, 1998).  Each realization of Z(u) is
denoted by z(l)(u),  u ∈  Α.  A conditional simulation is the
simulation conditioned to a set of n sample data. In this
case the resulting realizations honor the sample data values
at their location, i. e., z(l)(uα) = z(uα), ∀  l.

Deutsch, 1998, presents a sequential indicator simulation
approach that uses local ccdf approximation, determined by
the indicator kriging approach, in order to obtain
realizations of RVs Z(u),  u ∈  Α.  For creating a raster
representation, one univariate ccdf is modeled at each node
of the all grid nodes visited along a random sequence. To
ensure reproduction of the z-covariance model, each
univariate ccdf is made conditional not only to the sample
data but also to all values simulated at previously visited
locations (Goovaerts, 1997).

The realizations are drawn using probability values,
obtained from an uniform random model, that are mapped
to z values taking into account the estimate univariate ccdf
for each node location (Felgueiras, 1999). Figure 2
illustrates this process.
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Figure 2 Process of obtaining a realization from
a estimated univariate ccdf

6 Evaluation of statistical parameters from the
realizations

The set of realizations at a node location u can be used to
determine a ccdf, along with its parameters, of a RV Z(u).

The most popular predictive ccdf parameter is the mean
value µµµµ. From a set of realizations the mean value of a ccdf
is evaluated as the average of all the realizations. The
variance and the standard deviation, σσσσ , is easily evaluated
using the realization values and the mean value.

The median value, q.5, can be determined splitting the set of
realization into 2 subsets, each with equal number of
elements. Also, the set of realizations can be split in more
equal subsets to derive different quantile values. When the
median and the mean values are closer the distribution can
be considered symmetric The median is a more robust
estimator for non-symmetrical distributions (Isaaks, 1989).

7 Uncertainty assessment for local estimates

As already emphasized,  in section 2, the univariate ccdf of
a RV is used to model uncertainty about the value z(u)
while the multivariate ccdf is used to model joint
uncertainty about K values z(u1),...,z(uk). Therefore, given a
ccdf model it is possible to derive various probability
intervals that can be used as uncertainty metrics.

For numerical attributes usually the uncertainties are
expressed as confidence intervals. When the ccdf of a RV
Z(u) presents a high degree of symmetry  and the normality
of the distribution can be assumed, the estimated value
z*(u), typically the mean value µµµµ, and the standard
deviation σσσσ are combined to derive a Gaussian-type
confidence intervals, centered on  z*(u), such as:

where σσσσ2(u)=E{(Z(u)–E{Z(u)})2}.

For non-symmetrical distributions one can derive
probability intervals based on quantiles of the ccdf. For
example, the 95% interval [q0.025;q0.975] is taken as:

with q0.025 and q0.975 being the 0.025 and 0.975 quantiles of
the ccdf, i. e., F*(u; q0.025|(n)) = 0.025 and F*(u; q0.975|(n))
= 0.975

8 A case study for elevation data

In order to illustrate the concepts presented above, this case
study uses a set of elevation data sampled in the region of a
experimental farm called Canchim. The study region is
located in the city of São Carlos, SP, Brazil, and cover an
area of 2660 ha between the north-south coordinates from s
21o55’00’’ to s 21o59’00’’ and  the east-west coordinates
from w 47o48’00’’ to w 41o52’00’’.

The data set consists of 662 elevation samples distributed
in the Canchim region as illustrated in the Figure 3. Some
statistic values of this sample set is shown in the Table 1.

Statistic    Value

 Number of Samples 662

 Mean Value 800.596

 Variance 4481.662

 Standard Deviation 66.945

 Coefficient of Variation 0.084

 Coefficient of Skewness -0.296

 Coefficient of kurtosis 1.562

Minimum Value 687.000

 Lower Quartile 732.500

 Median 827.000

 Upper Quartile 859.500

 Maximum Value 911.000

Table 1 Univariate statistics of the elevation
sample set  of the Canchim region
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Figure 3 Distribution of the elevation data set
observed in the Canchim region.

The histogram graph, presented in the Figure 4, shows  the
distribution of the elevation sample set compared with a
normal curve distribution. It can be seen that the sample
data distribution approximates a bimodal behavior and
differs considerably from the Gaussian (normal) or
symmetrical distribution.

Figure 4 Histogram of the elevation sample set
emphasizing the non-normal and non-symmetrical
behavior of the distribution.

The original sample set was split in 10 equal subsets
(deciles) using 9 cutoff elevation values. Each cutoff value
was considered in order to create indicator subsets using
the indicator transformation explained in section 4. The
variability of the indicator subsets are analyzed allowing
the definition of an experimental and a theoretical
variogram model for each subset. These tasks were
performed using the geostatistical module of the SPRING
GIS version 3.3 (SPRING (DPI/INPE), 1999).

The variogram models, along with the original sample set,
were used to set the parameter values of the gslib (Deutsch,
1998) sequential simulation program named sisim. This
program was modified and used for estimating 400
realizations of 200 rows by 200 columns elevation grids
(rectangular regular grids). Considering the 400 elevation
realizations at any grid location u it was possible to render
the mean and the median value maps using the
methodologies defined in section 6. These maps are shown
in the Figures 5 and 6. A qualitative (visual) comparative
analysis of the two maps shows that they differs. This is
explained by the non-symmetrical distribution of the
elevation distribution model. Because of these, the median
map can be considered  more representative as central
measure for this attribute in the region considered.

Figure 5 Elevation grid map of local mean
values estimated from the 400 grid realizations
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Figure 6 Elevation grid map of local median
values estimated from the 400 grid realizations

The Figures 7, 8 and 9 show uncertainty maps rendered
also using the 400 elevation realizations and the confidence
interval methodologies explained in section 7.

Figure 7 Map of local uncertainties  based on
Gaussian-type confidence intervals (Prob{Z(u)
∈  (µµµµ ± σσσσ)}≅ 0.68)

Figure 8 Map of local uncertainties based in the
interquartile confidence intervals (Prob{Z(u) ∈
[q0.25;q0.75]} = 0.5)

Figure 9 Map of local uncertainties based on
interdecile confidence intervals (Prob{Z(u) ∈
[q0.10;q0.90]} = 0.8)
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It can be seen that all the above uncertainty map values are
related to the attribute behavior. These uncertainty maps
present maximum uncertainty values on regions (whiter
regions) where the attribute values behave more erratically.
Minimum uncertainty values (blacker regions) appear
where the attribute values vary smoothly.

The map of Figure 7 shows uncertainty values based on
Gaussian-type confidence intervals. This map was
generated using one standard deviation centered in the
mean value (Prob{Z(u) ∈  (µµµµ ± σσσσ)}≅ 0.68). It is common to
use this map as the uncertainty map related to the map
estimated by mean values (Figure 5). A care has to be taken
on using this type of uncertainty representation. It must be
used only when the attribute variation can be modeled as
RV with symetric-distributions (normal one, for example).

The maps of Figures 8 and 9 represent uncertainties as
confidence intervals based on quantiles. The quantile
values are estimated directly from the 400 realizations as
explained in the section 7.

The map of Figure 8 was obtained using interquartile
confidence intervals (Prob{Z(u) ∈  [q0.25;q0.75]} = 0.5) while
the map of Figure 9 was generated with interdecile
confidence intervals (Prob{Z(u) ∈  [q0.10;q0.90]} = 0.8 ). As
expected the map of Figure 9 contains larger uncertainty
values than the one of Figure 8. The decision about which
one to use depends on the accuracy demanded by an
application. Finally the interquantile uncertainty maps are
more appropriated to be used when the RV distributions
can not be proven to have symmetrical behavior.

9 Conclusions

The concepts and results presented in this work show that
the  indicator simulation methodology is an interesting
option to be considered when estimates with uncertainty
assessments for numerical spatial attributes are required.
The use of indicator simulation approach presents the
following advantages:

•  the indicator approach is non-parametric, so, it can be
used independently of the attribute distribution model;

•  the indicator approach allows assessment of
uncertainties related to the attribute variability using an
approximation of attribute distribution model;

•  the sequential indicator algorithm determine the
univariate ccdfs taking into account the sample data
set and all values simulated at previously locations.
This ensure reproduction of the z-covariance model,
representing better the attribute variability;

•  the various equally probable outcome realizations of
the indicator simulation can be used as input for
complex spatial modeling (with multilayer analysis)
performed by Monte Carlo simulation method. Also,

the outcomes of the spatial analysis results can be used
to define their ccdf´s and, therefore, modeling their
uncertainties.

Finally, it can be emphasized that the indicator simulation
methodology can be applied, also, to thematic spatial
attributes with minor modifications. This has been the
subject of researchs that will be reported in the near future.
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