Contents

1

2

3

4

Introduction

Features

How to use

LuaCom User Manual

Version 1.0 (beta)

Vinicius Almendra Renato Cerqueira

LuaCom Elements

25th June 2001

4.1 LuaCom APl . . . o
4.2 LuaComobjects
4.3 ActiveXbinding. e

4.3.1 ConnectionPoints. e
4.4 Type Conversion. o i i i e e e e e e e e e e

441
4.4.2
4.4.3
444
445

4.5 Parameter Passing

Numeric types.

SHtiNgS e e e e e

Boolean values

Pointers téDispatch andLuaComobjects
Arraysand Tables. e
446 CURRENCHNdDATE

Release Information

5.1 Technical Information

5.1.1 Supporte€OM Types. i e

5.2 Limitations
bugs.

5.3 Known
5.4 History

Reference

6.1 The Lua API

6.1.1
6.1.2

Credits

luacomCreateObject

luacomConnect

1 Introduction

LuaCom is an add-on library to the Lua language that allows Lua programs to use and implement
objects that follow Microsoft<€Component Object Mod¢COM) specificatiorand use theActiveX
technologyfor property access and method calls.

2 Features
Currently, theLuaCom library supports the following features:

o dynamic creation c€OM objects registered in the system registry, viatteeom_CreateObject
function;

e COM method calls as normal Lua function calls;

e property access as normal table field access;

e type conversion between OLE Automation types and Lua types for the most important types;
e object disposal using Lua garbage collection mechanism;

e implementation ofCOM interfaces using Lua tables;

e use ofCOM connection point mechanism to handle bidirecional communication and event han-
dling.

3 Howto use

Using LuaCOM is straightforward: you just have to link your program vidteCom’s library, in-
clude theLuaCom’s header —uacom.h — and call the propter initialization and termination
functions before using any @fuaCom’s functionalities. Here is an example of a sim@le program
usingLuaCom.

/-k

* Sample C program using luacom
*

#include <stdio.h>

#include "luacom.h"

int main (int argc, char *argv[]) {
/* library initialization */
iolib_open();
strlib_open();
mathlib_open();

if(luacom_open()) {
puts("Error initializing LuaCOM!™);
exit(1);

}

if(lua_dofile("activex_sample.lua”) !'= 0) {

puts("Error running sample.lua!);
exit(1);
}

luacom_close();
return O;

}

LuaCom’s initialization may fail, so it's necessary to check the return valueatom_open .

4 LuaCom Elements
LuaCom is composed by the following elements:

e LuaCom API, used primarily to initialize the library, create objects, implem&ctiveX inter-
faces in Lua and to manipulate connection points;

e LuaCom objects, which make available in LiectiveX objects and interfaces;

e ActiveX binding, which translates accessesLamCom objects toActiveX interface callsand
ActiveX access on an inteface implemented in Lua to Lua function calls or table accesses;

e LuaCom type conversion rules, which govern the type conversion between LuAgativeX
values;

e LuaCom parameters passing rules, which describe hoaCom translate d ua parameter list
to aCOM one and vice versa.

4.1 LuaCom API

Currently, theLuaCom API is divided in two parts: the Lua API and the C/C++ API. The C/C++
API is used primarily for initialization of the library and for low-level constructionLoRCom ob-
jects. The Lua API permits Lua programs to access all the functionality@Com. Below there is
summary of the.uaCom API. Detailed information on these functions is available at sedion

Lua API

Function

|

Description

luacom_CreateObject

Creates duaCom object

luacom_Connect

Creates a connection point between
object and a Lua table

luacom_Implinterface

Implements an IDispatch interface
using a Lua table

luacom_ImplinterfaceFromTypelib

Implements an IDispatch interface
described in a Type Library using a
Lua table

luacom_addConnection

Connects twd.uaCom objects

luacom_releaseConnection

Disconnects &uaCom object from
its connection point

luacom_isMember

Checks whether a name correspond
a method or a property of druaCom
object

to

luacom_ProgldfromCLSID

Gets the ProgID associated with a
CLSID

luacom_CLSIDfromProgld

Gets the CLSID associated with a
ProgID

luacom_GetObject

Creates d.uaCom object associated
with an instance of an already runnin
ActiveX object

C/C++ API
Function \ Description |
luacom_open Initializes theLuaCom library. It
must be called before any use of
LuaCom features.

luacom_close Frees any system resources used by
LuaCom.
luacom_idispatch2luacom Takes an IDispatch interface and

creates duaCom object to expose it,
pushing the object on the C2Lua stack.

4.2 LuaCom objects

LuaCom deals withLuaCom objects which are no more than a Lua table with theaCom tag and

a reference to theuaCom C++ object. This C++ object holds the interface pointer toAlsiveX
object and translates Lua accesseAdtiveX calls and property accesses. Here is a sample where a
LuaCom object is used:

-- Instantiate a Microsoft(R) Calendar Object
calendar = luacom_CreateObject("MSCAL.Calendar.7")

-- Error check

if calendar == nil then
print("Error creating object")
exit(1)

end

-- Method call

calendar:AboutBox()

-- Property Get
current_day = calendar.Day

-- Property Put
calendar.Month = calendar.Month + 1

print(current_day)
print(calendar.Month)

LuaCom objects are released through Lua’s garbage collection mechanism, so there isn’t any
explicit API function to destroy them.

A LuaCom object may be passed as an argument to method calls onlate@om objects, if
these methods expect an argument of tgispinterface *.

4.3 ActiveX binding

TheActiveX binding is responsible for translating the table accesses taif@om object toActiveX
interface calls. Besides that, it also provides a mechanism for implemeiting X dispinterfaces,
using ordinary Lua tables. Currently, these dispinterfaces must be definégpia library, which can

be associated to an register&ctiveX object or just a stand-alone type library. Follows a sample of
implementingActiveX dispinterfaces in Lua.

-- Creates and fills the Lua table that will implement the
-- ActiveX interface

events_table = {}

function events_table:AfterUpdate()
print("AfterUpdate called!")
end

-- Here we implement the interface DCalendarEvents, which is part
-- of the Calendar object, whose ProglD is MSCAL.Calendar and the
-- major version is 7

events_obj = luacom_Implinterface(
events_table,
"MSCAL.Calendar.7",
"DCalendarEvents",
7)

-- Checks for errors

if events_obj == nil then
print("Implementation failed")
exit(1)

end

-- Tests the interface: this must generate a call to the events:AfterUpdate
-- defined above

events_obj:AfterUpdate()

If the interface to be implemented is described in a stand-alone type library, the funetom_ImplinterfaceFrc
must be used instead:

! dispinterfaces are ActiveX interfaces that have (or are designed to have)ispatch implementation, which
permits late-binding and its use by interpreted languages.

-- Creates and fills the Lua table that will implement the
-- ActiveX interface

hello_table = {}
function hello:Hello()
print("Hello World!")
end
-- Here we implement the interface IHello
hello_obj = luacom_ImplinterfaceFromTypelib("hello.tlb","IHello™)

-- Checks for errors

if hello_obj == nil then

print("Implementation failed")
exit(1)
end

-- Tests the interface

hello_obj:Hello()

Both functions return AuaCom object, whose correspondidgtiveX object is implemented by
the supplied table. So, any Lua calls to theaCom object will be translated téctiveX calls which,
in turn, will be translated back to Lua calls on the implementation table. ld€om object can be
passed as an argument&otiveX methods who expectdispinterface or to LuaCom API functions
(like luacom_addConnection).

4.3.1 Connection Points

Connection points are a stand@civeX mechanism whose primary objective is to allow Aative X
object to notify its owner of any kind of events. The connection point works as an “event sink”, where
events and notifications go through.

To establish a connection usibhgaCom, the owner of théctiveX object must create a table to
implement the connection point interface, whose description is provided bActineeX object (this
interface is called @&ourceinterface) and then call the API functidnacom_Connect , passing
as arguments theuaCom object for theActiveX object and the implementation table. Doing this,
LuaCom will automatically find the default source interface, creataiaCom object implemented
by the supplied table and then connect this object tahitteve X object. Here follows a sample:

-- Creates the ActiveX object

calendar = luacom_CreateObject("MSCAL.Calendar.7")

if calendar == nil then
exit(1)
end

-- Creates implementation table

calendar_events = {}

function calendar_events:AfterUpdate()
print("Calendar updated!")
end

-- Connects object and table

res = luacom_Connect(calendar, calendar_events)

if res == nil then
exit(1)
end

-- This should trigger the AfterUpdate event

calendar:NextMonth()

It's also possible to separately createumCom object implementing the connection point source
interface and then connect it to the object udimgcom_AddConnection

-- Creates the ActiveX object

calendar = luacom_CreateObject("MSCAL.Calendar.7")

if calendar == nil then
print("Error instantiating calendar”)
exit(1)

end

-- Creates implementation table

calendar_events = {}

function calendar_events:AfterUpdate()
print("Calendar updated!")
end

-- Creates LuaCOM object implemented by calendar_events
event_handler = luacom_Implinterface(calendar_events,
"MSCAL.Calendar.7",
"DCalendarEvents”, 7)

if event_handler == nil then
print("Error implementing DCalendarEvents")
exit(1)

end

-- Connects both objects

luacom_addConnection(calendar, event_handler)

-- This should trigger the AfterUpdate event

calendar:NextMonth()

-- This disconnects the connection point established

luacom_releaseConnection(calendar)

-- This should NOT trigger the AfterUpdate event

calendar:NextMonth()

4.4 Type Conversion

LuaCom is responsible for converting values frdd®M to Lua and vice versa. This type conversion

is done following some rules. This rules must be known to avoid misinterpretation of the conversion
results and to avoid errors. It's also necessary to verify which type conversions are supported (see
section5.1.J).

4.4.1 Numeric types

All COM numeric types are convertedltoa numbertype and vice versa.

4.4.2 Strings

Lua strings are converted 8STR(Basic Strings) and vice versa. lAia string containing a number
may be converted to &OM numeric type if the interface of the component receiving that value
requires a numeric element.

4.4.3 Boolean values

Lua uses thenil value as false and namt values as true. AkuaCom gives a special meaning
for nil values in the parameters, it can’'t usea convention for true and false values; instead, it
defines two global variablesCTRUEandLCFALSE that must be used when passing boolean values
to LuaCom or receiving them, either via parameters or via properties. Here follows a sample:

-- This function alters the state of the of the window.
-- state is a Lua boolean value

-- window is a LuaCOM object

function showWindow(window, state)

if state then

window.Visible = LCTRUE
else
window.Visible = LCFALSE
end
end

-- Shows window
showWindow(window, 1)

-- Hides window
showWindow(window, nil)
4.4.4 Pointers tolDispatch and LuaCom objects

A pointer tolDispatch is converted to &uaCom'’s object whose implementation is provided by
the received pointer. AuaCom’s object is converted t€OM simply passing its interface imple-
mentation taCOM.

4.4.5 Arrays and Tables
To be converted t&€OM, a table must follow these restrictions
e must be an array;

e all of its non-table elements must be of the same type.

If the table follows these restrictions, it will be converted t8 AFEARRAYvhose elements will
be the non-table elements of the table.

The conversion from a SAFEARRAY to a table is analogous. Here are some samples of how is
this conversion done:

10

] Lua table \ Safe Array \

table = {"name", "phone"} {,,name» » phone” w
table = {{1,2},{4,9}} L2
4 9

4.4.6 CURRENC¥nd DATE

These types are treated as common numidaraCom doesn't interpret them: just blindly converts
from or todouble ’s using the Windows API. See sectibril.1for the current status dfuaCom’s
support for these two types.

4.5 Parameter Passing
Method call forLuaCom objects are done the same way as calling functions inside tables:

table = {}

function table:method(parameter)
return retval
end

-- method call
a = table:method(2)

Nevertheless, there are some differences concerning optional paramete@Miryou can omit
parameters in method calls. To do sd_.iCom, just put anil value as the value of the parameters
to be omitted. Here follows a sample:

-- the Find method expects 4 parameters, of which the last 2 are optional

-- Call with all parameters
obj:Find("name", "John", LCTRUE, "index")

-- Call omitting the optional parameters
obj:Find("name", "John")

-- Call omitting the third parameter
obj:Find("name", "John", nil, "index")

It's important to notice that theil value IS NOT converted to@OM boolean false (see section
4.4.3.

11

5 Release Information

Here is provided miscellaneous information specific to the current versittwafom. Here are
recorded the current limitations @uaCom, its known bugs, the history of modifications since the
former version, technical details etc.

5.1 Technical Information

5.1.1 SupportedCOM Types

The following types are fully supported:

e numeric types;

strings;

booleans;

IDispatch pointers;

safe arrays of numeric and string types.

In section4.4there is a description of holwuaCom converts fromCOM types toLua ones and
vice versa. TheCURRENCYNnd DATEtypes are supported but are blindly converted from and to
double ; no interpretation of their values is done. They should be used carefully as they haven't been
tested yet.

5.2 Limitations

Here are listed the current limitations bfiaCom, as of the current version, and information about
future relaxation of this restrictions.

e SAFEARRAY of VARIANTs aren't supported yet. This should be implemented in the next
version;

¢ indexed properties are not supported yet. Their implementation is due to the next version;

e LuaCom only allows one connection point for eaglttiveX object. This limitation may be
relaxed in future versions;

e some functions oEkuaCom’s Lua API are NOT protected against bad parameters. There may
belLua errors or application errors if they are called this way;

e it's not possible to create an instance offsativeX object whose initialization is done through
a persistence interfaciersistStream , IPersistStorage etc). Anyway, most of the
ActiveX objects already tested initialize themselves throGgiCreatelnstance . Initial-
ization via persistence interfaces is due to the next release;

o the automatic disposal @OM objects throughLua garbage collection mechanism may not
release alCOM objects. This should be improved on the next release;

12

e LuaCom doesn’t provide access @OM interfaces that doesn’t inherit thBispatch inter-
face. That is, only Automation Objects are supported. This restriction is due to the late-binding
feature provided byuaCom. It's possible to provide access to theS®M interfaces via a
"proxy” Automation Object, which translate calls made through automation to vtable (early-
binding) calls. It's also possible to implement this "proxy” directly usingaCom C/C++ API,
but this hasn't been tested nor tried;

e LuaCom doesn't allow the implementation of a full-fledged Automation Object, as it lacks a
some functionalities needed for this (class factories, type library construction etc). This should
be implemented on a future release;

e LuaCom doesn’t handle exceptions very well yet. Currently, almost all exceptiond.gall
functionlua_error , possibly aborting théua code. A more careful exception handling
mechanism is due to the next release.

5.3 Known bugs

Here are recorded the known bugs preserituaCom. If any other bugs are found, please report
them throughL.uaCom’s home page.

e there are some memory leaks and interface leaks.

5.4 History

There is no history yet, as this is the first public releaskeusfCom. ..

6 Reference

6.1 The Lua API

This section is still incomplete. Here are documented just the most important functions needed for
dealing withCOM objects.

6.1.1 luacomCreateObject

Use

luacom_obj = luacom_CreateObject(ProglD)

Description

This function finds the Class ID referenced by the ProglD parameter and creates an instance of the
object with this Class ID. If there is any problem (ProgID not found, error instantiating object), the
function returns nil and prints an error message in the terminal.

Parameters

| Parameter | Type |
| ProgID | String |

13

Return Values

] Return ltem \ Possible Values

luacomobj | LuaCom tag
nil

Sample

inet_obj = luacom_CreateObject("InetCtls.Inet")

if inet_obj == nil then
print("Error! Object could not be created!")
end

6.1.2 luacomConnect
Use

implemented_obj = luacom_Connect(luacom_obj, implementation_table)

Description

This functions finds the default source interface of the oljemtom_obj , creates an instance of
this interface whose implementation is givenilmplementation_table and creates a connec-
tion point between théduacom_obj and the implemented source interface. Any calls made by
theluacom_obj to the source interface implementation will be translated to lua calls to member

function present in themplementation_table . If the function suceeds, theuaCom object
implemented bymplementation_table is returned; otherwisanil is returned.
Parameters
] Parameter | Type |
luacom_obj LuaCom tag
implementation_table Table

Return Values

] Return Item \PossibIeVaIues

implementedobj | LuaCom tag
nil

Sample

events_handler = {}

function events_handler(new_value)
print(new_value)

14

end

events_obj = luacom_connect(luacom_obj, events_handler)

7 Credits

LuaCom has been developed by Renato Cerqueicarfi@tecgraf.puc-rio.br) and Vinicius Al-
mendra élmendra@tecgraf.puc-rio.br). The project has been sponsored by TeCGraf (Technology
Group on Computer Graphics).

15

	Introduction
	Features
	How to use
	LuaCom Elements
	LuaCom API
	LuaCom objects
	ActiveX binding
	Connection Points

	Type Conversion
	Numeric types
	Strings
	Boolean values
	Pointers to IDispatch and LuaCom objects
	Arrays and Tables
	CURRENCY and DATE

	Parameter Passing

	Release Information
	Technical Information
	Supported COM Types

	Limitations
	Known bugs
	History

	Reference
	The Lua API
	luacom_CreateObject
	luacom_Connect

	Credits

