SCS Java Tutorial

L. Marques, E. Fonseca, S. Corréa, R.Cerqueira
Departamento de Informatica
Pontificia Universidade Catolica do Rio de Janeiro (PUG}RI
rcerq@inf.puc-rio.br

1 Introduction

This document is a basic tutorial to the Java version of th& 8@mponent system,
focusing on the developer’'s perspective. It is structurec digh level description
of the main parts of the system and intentionally skips sameri details in order to
leave the complexity to more specific documentation for aded users. The system
has been implemented with the Java v. 1.5 language and CORBAywhich me-
ans that the interfaces described in this document use titevsfrom the Interface
Description Language (IDL) specification from CORBA. Thiaxdment assumes that
the reader is familiar with the concepts related to compbseftware development,
the CORBA terminology and the SCS API. A complete tutorisda#ing the SCS
API can be found aht t p: / / www. t ecgr af . puc-ri o. br/ ~scorreal/ scs/
docs. htm

2 Abstract Classes

In order to help the application developer to prevent erintoduced by repetitive

coding, the component system provides some base classeaphament the common

features of the SCS core interfaces. The basic algorithesrglemented in the base
classes using template methods, leaving the specific cddmipe derived classes.
The following topics describe this mechanism.

2.1 | Conponent Ser vant

The | Conponent Ser vant abstract class implements the most basic features of
the | Conponent interface, providing implementation for the following rhets:

get Facet ,get Facet ByNane, get Conponent | d. There are three abstract methods
that must be implemented by the user:

e bool ean doSt art up() : this method should implement the specific actions
of the startup procedure. The exception declaration arahiing is done by the
base class.

e bool ean doShut down(): analogous to the previous method, this should
define the specific behavior concerning the shutdown praeedu

e ArraylLi st <Facet Descri ption> creat eFacet s() : this method must
return a container (arraylist) of objects describing theeta available. The base
class contains the generic algorithm to return the inforome&bout facets des-
cribed in the IComponent interface. This method shouldakhite the servants
that implement the component’s facets and fill the assatigéeetDescription
structure, which is to be inserted in the returrfed ayLi st .

When using thget Facet method, one should provide the interface name. This
name is a string containing the complete path to the interfee., the interface name
and the modules in which it was defined. For example, thefatemame of interface
defined in listing 1 isscs: : denos: : pi ngpong: : Pi ngPong.

2.2 | Metal nterfaceServant

| Met al nt er f aceSer vant implements theé Met al nt er f ace interface, provi-
ding implementation for the following methodget Facet s, get Facet sByNane,
get Recept acl es andget Recept acl esByNane. Analogoustd Conponent -
Ser vant , when using theyet Facet s method, the complete path to the interface
should be provided. Classes deriving from thieet al nt er f aceSer vant must
provide two methods to complete the basic features cordamés interface specifi-
cation:

e | Conponent Servant get | Conponent Ser vant () : returns the corres-
pondingl Conponent Ser vant class thatis described by thékt al nt er f ace.
The base class contains the code that builds the needetustsito provide the
information used by the client application.

e Arrayli st <l Recept acl esServant > get| Recept acl esServants():
this method is analogous to the previous, but relates td Recept acl es
available in the component being described. If the compbdees not have an
| Recept acl es interface available, this method should return null. Trianre
is an array list of Recept acl esSer vant s because ahConponent may
have more than oneRecept acl esSer vant available.

2.3 | Recept acl esSer vant

| Recept acl esSer vant implements thd Recept acl es interface, providing
implementation for the following methodsonnect ,di sconnect andget Conne-
ctions. The abstract methods specified by theecept acl esSer vant class
are:

e Arrayli st <Recept acl e> creat eRecept acl es() : this method ins-
tantiates the receptacles provided by the derived claspuatisdhem in an array-
list container. With this container, the base class is ablenplement the con-
nection mechanism. ThRecept acl e class is defined in the scs.core.servant
package, and its constructor is defined bellow.

public Receptacle(String nane, String interfaceNane,
bool ean i sMul ti pl ex)

e i nt get ConnectionLi mt(): this method provides the upper limit on
the number of simultaneous connections, to avoid resowfcaustion. This is
application specific, so it is delegated to the derived elgass

e bool ean i sValidConnection(org. ong. CORBA. Cbj ect obj): this
abstract method should be implemented by the derived clasal®ows the ap-
plication to choose the connection validation policy. Tllean return indi-
cates if the connection should be accepted, and in the negatse the Invalid-
Connection exception is thrown to the client.

3 Creating a Component

In this section, a simple component is presented along \wihsteps to build it. To
illustrate the examples, the component chosen is the PmgB&mo, included in the
SCS source package.

Creatingthe IDL

The PingPong demo is a simple component application thatrndogdo anything use-

ful, but demonstrates the basic mechanisms for the SCSwsy#teonsists of a single
component with a facet that implements the PingPong irderfiisting 1). Two instan-

ces of the component are created and connected to eachluthegh their receptacles
i nf oRecept acl e, as shown in figure 1.

IComponent IReceptacles IComponent IReceptacles

t ! t?

PingPong infoReceptacle PingPong infoReceptacle

@=— PingPong (____________ @ PingPong (__1

connect

Figura 1: PingPongDemo - two instances of PingPongCompawemected to each
other

Generating the stubs

To create the stubs for the client and server, the followmgmand should be execu-
ted, assuming that the Java JDK is on the system’s path:

idlj -fallTIE pingpong.idl

This should generate various files that support the cliedtsarver stubs for the
application.

Listing 1: The PingPong Interface

1 module scs{

2 module demos{

3 module pingpong {

4 interface PingPong {
5 void setld(in long identifier);
6 long getld();

7 void ping();

8 void pong();

9 void start();

10 void stop();

11 };

12 }

13 }

14 }

Deriving abstract methods

In this section we create a component which offers the PingRoterface as a fa-
cet. Lets call this compone®i ngPongConponent . The first step is to create a
new class deriving frorh Conponent Ser vant and provide implementation for the

abstract methods. Listing 2 shows the most important pdrisi® code. In the lis-
ting, lines 10-15 define a facet call®l ngPong which implements th&i ngPong
interface. Similarly, lines 18-22 define a facet caliatf oRecept acl e which im-
plements thé Recept acl es interface.

Listing 2: The PingPong Component

1 public class PingPongComponent extends IComponentServant {

2

3 private final static String IFACE_PINGPONG = "scs::demos:: pingpong:: PingPong";
4 private final static String FACET_PINGPONG = "PingPong";

5 private static final String FACET_INFO = "infoReceptacle";

6 private static final String IFACE_INFO = "scs::core::|Receptacles”;

7

8 @Override

9 protected ArraylList<FacetDescription> createFacets () {

10 ArraylList<FacetDescription> facets = new ArraylList<FacetDescription >();
11 FacetDescription fd = new FacetDescription ();

12 fd.interface_name = IFACE_PINGPONG;

13 fd .name = FACET_PINGPONG;

14 fd.facet_ref = getPingPong(); //returns an object implementing the
15 /I PingPong interface

16 facets.add(fd);

17

18 fd = new FacetDescription ();

19 fd.interface_name = IFACE_INFO;

20 fd .name = FACET_INFO;

21 fd.facet_ref = this.getinfo(); // returns an object implementing the
22 /1 IReceptacles interface

23 facets.add(fd);

24 return facets;

25 }

26

27 @Override

28 protected boolean doShutdown() {
29 return true;

30 }

31

32 @Override

33 protected boolean doStartup () {
34 return true;

35 }

36

37 }

Creating the servant and the facets

After creating the component, we must provide the servdrasitmplement the com-
ponent facets. Considering the pingpong application, wetmrovide a servant for
thePi ngPong andi nf oRecept acl e facets. Listing 3 shows the implementation
of Pi ngPongSer vant , which implements th&i ngPong facet. In line 19, the
i nf oRecept acl e facet is obtained in order to manage the component conmectio
In line 22, the object connected to the component recepisoddrieved in order to call

5

thepi ng method (line 29). Similarly, thei ng method obtains the object connected
to the component receptacle and calls ploang method of the object. Additionally,
thepong method obtains the object connected to the component sde@nd calls
thepi ng method of the object.

Deploying the Component

The component may be deployed in a .jar file or as a collectioolass files. Either
way, it must be registered in tlses. pr operti es file, included in directory <SCS-
Dir>/scripts/execute. Below, we have a sample from thepsaperties file:

conponent - Pi ngPong- 1=scs. denos. pi ngpong. servant .
Pi ngPongConponent
jar-fil es=pi ngPong. | ar
container.java = ../../scripts/execute/run-container.sh

The first line contains the mandatory prefix (componentjoWéd by the name
and the version of the deployed component. The right frometial sign is the full
package and class name for the component. The .class filekldt®in a directory
that is listed in the CLASSPATH of the Java environment. Téeosd line should
be included only if the component is deployed as a .jar filee Trird line is used
by the execution node to start a container processit ai ner . j ava is a property
that indicates the script to be called when starting a coetgirocess. For Windows
platform the script to be called isun- cont ai ner - cnd. For Linux platform, the
scriptisr un- cont ai ner. sh.

The scriptg un- cont ai ner . sh andr un- cont ai ner . cnd contains a com-
mand line to start the container application. Thereforéotgerunning the examples,
set the JAVA_HOME variable in the scripts to reflect the pattere java is installed.

L oading the Component

In this section we describe how containers are created tiocchogponent implementa-
tions. A client application that instantiates and deployRi agPongConponent
component is illustrated in listing 4. First, the applicatigets a reference to the
Execut i onNode component representing the node where the component will be
executed. In this example, this is done using the JDK Nama@efline 12). Calling
methodget Facet , the application obtains a reference to theecut i onNode fa-

cet (line 15), which, in turn, is used to invoke thear t Cont ai ner method (line

25). This method creates and returns a reference to theinentamponent, in which

an instance oPi ngPongConponent will be loaded. In the next step, the appli-
cation gets the containet®nponent Loader facet and invokes theoad method,

passing as parameter tBenponent | d structure, representing tiike ngPongConponent
implementation (lines 30- 39). This method returns a hatalleePi ngPongConponent
instance just created. By calling methetart up (line 40), the instance is acti-
vated and calling method getFacet (line 45), the applioagjets a reference to the
Pi ngPong facet.

Since the instances were created, the application resloériedependences, con-
necting the two instances through their receptacles (B3 $6). Finally, thest ar t
method is invoked in both components in order to start thesages exchange.

4 Running the example

The PingPong demo can be executed by running the followingwands:

1. Run the ORBD. The ORBD is the ORB name service included thighJDK.
It is used by the application to locate the Execution Node &y@, instead of
using the object’s IOR. In Windows use the following commémdtart ORBD:

> start "ORBD' orbd.exe -ORBlInitialPort 1050
-serverPol I i ngTi me 200

In Linux, use the following command to start ORBD:

> orbd -ORBInitial Host | ocal host -ORBInitial Port 1050
-serverPol I i ngTi me 200

2. Edit the scs.properties file to set the environment cordigons.

3. Edit the run-container scrip (sh or cmd) and set the JAVAME variable to
point to the path where java is installed.

4. Run the Execution Node. Considering the SCS-Java roettoiry (<SCS-
DIR>/src/java), the command to start an Execution node is:

> java scs. execution_node. servant. Executi onNodeApp
..l ..lscripts/executel/scs.properties

5. Runthe Ping Pong Application. Considering the SCS-Jantdirectory (<SCS-
DIR>/src/java) the command to run the application is:

> java scs. denps. pi ngpong. servant . Pi ngPongApp

7

This command creates two component instances in the sant@maadn order
to run instances in different machines, one should provigehiosts and ports,
as described bellow:

> java scs. denps. pi ngpong. servant . Pi ngPongApp
<host-1> <port-1> <host-2> <port-2>

5 Miscellaneous

The SCS-Java package is provided with some scripts to halgrg the application.
Those scripts are available in the <SCS-DIR>/scripts/ete=directory. Also, for Li-
nux platforms, a makefile is provided in directory <SCS-DIfte/java. The makefile
can be used to compile the SCS-Java package. To use this optid the makefile
and set the JAVA_ HOME variable properly.

6 Conclusion

The example shown is just the startup for the developer taaykhow with the SCS

Java component system. A real example would be much longlenane complex, but

the focus would be taken away from the core of the componetesy. We recommend
the execution of the sample code to illustrate the dynanfitBeocomponent system
and the relationship between its main entities.

Listing 3: Servant implementing the PingPong interface

1 public class PingPongServant extends PingPongPOA {

2 private int identifier;

3 private PingPongComponent pingpong = null;

4 private IReceptacles infoReceptacle = null;

5 private ConnectionDescription conns|[];

6 private int pingPongCount;

7

8 public PingPongServant (PingPongComponent pingpong){

9 this .pingpong = pingpong;

10 }

11 public void setld(int identifier){

12 this.identifier = identifier;

13 }

14 public int getld (){

15 return identifier;

16

17 public void start() {

18 pingPongCount = 10;

19 infoReceptacle = IReceptaclesHelper .narrow(pingpong.getFacetByName
20 ("infoReceptacle"));

21 try {

22 conns = infoReceptacle.getConnections ("PingPong");

23 } catch (InvalidName e) {

24 e.printStackTrace ();

25 }

26 if (identifier==1) {

27 for (int i = 0; i < conns.length; i++) {

28 PingPong ppFacet = PingPongHelper.narrow(conns[i]. objref);
29 ppFacet.ping ();

30 }

31 }

32 }

33 public void stop() {

34 pingPongCount = 0;

35 }

36 public void ping() {

37 for (int i = 0; i < conns.length; i++) {

38 PingPong ppFacet = PingPongHelper.narrow(conns[i]. objref);
39 System.out. println ("Received ping from " + ppFacet.getld());
40 ppFacet.pong ();

41 }

42 }

43 public void pong() {

44 for (int i = 0; i < conns.length; i++) {

45 PingPong ppFacet = PingPongHelper.narrow(conns[i]. objref);
46 System.out. println ("Received pong from " + ppFacet.getld());
47 if (— this.pingPongCount > 0) {

48 ppFacet.ping ();

49 }

50 }

51 }

52 }

Listing 4: PingPong Application

1 public class PingPongApp{

© ® N o O~ WwN

DO oo 000 U U gg oo oga s BSBD DSBS DD BEDBSDWOWWWWWWWWWNDNDNDNNDNDNNDNDNDRERRERRRERRPRPRPRBE
© © N O OB WNPFP OO ®WWNOUWURWNRPROOOWSNOOODRAWNROOONOOWMAWNRO®O©OO®NOOURAWNRO®©O®WWNOOOAOWNDNLRO
—~

private static final String EXEC_NODE NAME = "ExecutionNode";

private static final String EXEC_NODE FACET = "scs::execution_node :: ExecutionNode";
private static final String CONTAINER_NAME = "PingPongDemoContainer";

private ExecutionNode[] execNode = null;
private IComponent container

/...

corbaname = "corbaname::" + host + ":" + port + "#"
+ EXEC_NODE_NAME ;

try {

org.omg.CORBA. Object obj = orb.string_to_object(corbaname);
IComponent execNodeComp = IComponentHelper.narrow (obj);
execNodeComp . startup ();
Object ob = execNodeComp.getFacet(EXEC_NODE_FACET);
execNode[i] = ExecutionNodeHelper.narrow(ob);

} catch (SystemException ex) {

/...

}

try {
Property prop = new Property();
prop.name = "language";
prop.value = "java";

Property propSeq|[] = { prop };
container = execNode. startContainer (CONTAINER_NAME, propSeq);
container. startup ();

} catch (ContainerAlreadyExists e){
/1

}

ComponentLoader loader = ComponentLoaderHelper.narrow (container
.getFacet("scs:: container:: ComponentLoader"));

Componentld ppCompld = new Componentld ();

ppCompld.name = "PingPong";

ppCompld.version = 1;

ComponentHandle ppHandle = null;

for (int j=0; j<numComponentPerNode; j++) {

try {
ppHandle = loader.load(ppCompld, new String[] { "" });
ppHandle.cmp. startup ();

} catch (ComponentNotFound e) {
/...

}

PingPong p = PingPongHelper.narrow (ppHandle.cmp
.getFacetByName (" PingPong"));

p.setld (id);
if (id ==1)
pplComponent = ppHandle.cmp;
else
pp2Component = ppHandle.cmp;
id++;
}
IReceptacles infol = IReceptaclesHelper.narrow (pplComponent
.getFacetByName ("infoReceptacle"));
IReceptacles info2 = IReceptaclesHelper.narrow (pp2Component

.getFacetByName ("infoReceptacle"));

PingPong ppl = PingPongHelper.narrow (pplComponent
.getFacetByName ("PingPong"));

PingPong pp2 = PingPongHelper.narrow (pp2Component
.getFacetByName ("PingPong"));

try {

infol.connect("PingPong", pp2);

info2 .connect("PingPong", ppl); 10
} catch (InvalidName e) {

/...
}

pp2.start();
ppl.start();

