
SCS Java Tutorial

L. Marques, E. Fonseca, S. Corrêa, R.Cerqueira
Departamento de Informática

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
rcerq@inf.puc-rio.br

1 Introduction

This document is a basic tutorial to the Java version of the SCS component system,
focusing on the developer’s perspective. It is structured as a high level description
of the main parts of the system and intentionally skips some inner details in order to
leave the complexity to more specific documentation for advanced users. The system
has been implemented with the Java v. 1.5 language and CORBA v. 2.3, which me-
ans that the interfaces described in this document use the syntax from the Interface
Description Language (IDL) specification from CORBA. This document assumes that
the reader is familiar with the concepts related to component software development,
the CORBA terminology and the SCS API. A complete tutorial describing the SCS
API can be found athttp://www.tecgraf.puc-rio.br/~scorrea/scs/
docs.html

2 Abstract Classes

In order to help the application developer to prevent errorsintroduced by repetitive
coding, the component system provides some base classes that implement the common
features of the SCS core interfaces. The basic algorithms are implemented in the base
classes using template methods, leaving the specific codingfor the derived classes.
The following topics describe this mechanism.

2.1 IComponentServant

The IComponentServant abstract class implements the most basic features of
the IComponent interface, providing implementation for the following methods:
getFacet,getFacetByName,getComponentId. There are three abstract methods
that must be implemented by the user:

1

• boolean doStartup(): this method should implement the specific actions
of the startup procedure. The exception declaration and throwing is done by the
base class.

• boolean doShutdown(): analogous to the previous method, this should
define the specific behavior concerning the shutdown procedure.

• ArrayList<FacetDescription> createFacets(): this method must
return a container (arraylist) of objects describing the facets available. The base
class contains the generic algorithm to return the information about facets des-
cribed in the IComponent interface. This method should initialize the servants
that implement the component’s facets and fill the associated FacetDescription
structure, which is to be inserted in the returnedArrayList.

When using thegetFacet method, one should provide the interface name. This
name is a string containing the complete path to the interface, i.e., the interface name
and the modules in which it was defined. For example, the interface name of interface
defined in listing 1 isscs::demos::pingpong::PingPong.

2.2 IMetaInterfaceServant

IMetaInterfaceServant implements theIMetaInterface interface, provi-
ding implementation for the following methods:getFacets,getFacetsByName,
getReceptaclesandgetReceptaclesByName. Analogous toIComponent-
Servant, when using thegetFacets method, the complete path to the interface
should be provided. Classes deriving from theIMetaInterfaceServant must
provide two methods to complete the basic features contained in its interface specifi-
cation:

• IComponentServant getIComponentServant(): returns the corres-
pondingIComponentServant class that is described by theIMetaInterface.
The base class contains the code that builds the needed structures to provide the
information used by the client application.

• ArrayList<IReceptaclesServant> getIReceptaclesServants():
this method is analogous to the previous, but relates to theIReceptacles
available in the component being described. If the component does not have an
IReceptacles interface available, this method should return null. The return
is an array list ofIReceptaclesServants because anIComponent may
have more than oneIReceptaclesServant available.

2

2.3 IReceptaclesServant

IReceptaclesServant implements theIReceptacles interface, providing
implementation for the following methods:connect,disconnectandgetConne-
ctions. The abstract methods specified by theIReceptaclesServant class
are:

• ArrayList<Receptacle> createReceptacles(): this method ins-
tantiates the receptacles provided by the derived class andputs them in an array-
list container. With this container, the base class is able to implement the con-
nection mechanism. TheReceptacle class is defined in the scs.core.servant
package, and its constructor is defined bellow.

public Receptacle(String name, String interfaceName,
boolean isMultiplex)

• int getConnectionLimit(): this method provides the upper limit on
the number of simultaneous connections, to avoid resource exhaustion. This is
application specific, so it is delegated to the derived classes.

• boolean isValidConnection(org.omg.CORBA.Object obj): this
abstract method should be implemented by the derived class and allows the ap-
plication to choose the connection validation policy. The boolean return indi-
cates if the connection should be accepted, and in the negative case the Invalid-
Connection exception is thrown to the client.

3 Creating a Component

In this section, a simple component is presented along with the steps to build it. To
illustrate the examples, the component chosen is the PingPongDemo, included in the
SCS source package.

Creating the IDL

The PingPong demo is a simple component application that doesn’t do anything use-
ful, but demonstrates the basic mechanisms for the SCS system. It consists of a single
component with a facet that implements the PingPong interface (listing 1). Two instan-
ces of the component are created and connected to each other through their receptacles
infoReceptacle, as shown in figure 1.

3

Figura 1: PingPongDemo - two instances of PingPongComponent connected to each
other

Generating the stubs

To create the stubs for the client and server, the following command should be execu-
ted, assuming that the Java JDK is on the system’s path:

idlj -fallTIE pingpong.idl

This should generate various files that support the client and server stubs for the
application.

Listing 1: The PingPong Interface
1 module scs {
2 module demos{
3 module pingpong {
4 i n t e r f a c e PingPong {
5 vo id se t Id (i n long i d e n t i f i e r) ;
6 long ge t Id () ;
7 vo id ping () ;
8 vo id pong () ;
9 vo id s t a r t () ;

10 vo id stop () ;
11 } ;
12 } ;
13 } ;
14 } ;

Deriving abstract methods

In this section we create a component which offers the PingPong interface as a fa-
cet. Lets call this componentPingPongComponent. The first step is to create a
new class deriving fromIComponentServant and provide implementation for the

4

abstract methods. Listing 2 shows the most important parts of this code. In the lis-
ting, lines 10-15 define a facet calledPingPong which implements thePingPong
interface. Similarly, lines 18-22 define a facet calledinfoReceptacle which im-
plements theIReceptacles interface.

Listing 2: The PingPong Component
1 public class PingPongComponent extends IComponentServant {
2

3 pr ivate f i n a l s ta t ic St r i ng IFACE_PINGPONG = " scs : : demos : : pingpong : : PingPong " ;
4 pr ivate f i n a l s ta t ic St r i ng FACET_PINGPONG = " PingPong " ;
5 pr ivate s ta t ic f i n a l St r i ng FACET_INFO = " in foReceptac le " ;
6 pr ivate s ta t ic f i n a l St r i ng IFACE_INFO = " scs : : core : : IReceptacles " ;
7

8 @Override
9 protected Ar rayL i s t <FacetDescr ip t ion > createFacets () {

10 Ar rayL i s t <FacetDescr ip t ion > face ts = new Ar rayL i s t <FacetDescr ip t ion > () ;
11 FacetDescr ip t ion fd = new FacetDescr ip t ion () ;
12 fd . in ter face_name = IFACE_PINGPONG;
13 fd . name = FACET_PINGPONG ;
14 fd . f a c e t _ r e f = getPingPong () ; / / r e tu rns an ob j ec t implementing the
15 / / PingPong i n t e r f a c e
16 f ace ts . add (fd) ;
17

18 fd = new FacetDescr ip t ion () ;
19 fd . in ter face_name = IFACE_INFO;
20 fd . name = FACET_INFO;
21 fd . f a c e t _ r e f = th is . ge t In fo () ; / / r e tu rns an ob j ec t implementing the
22 / / IReceptacles i n t e r f a c e
23 f ace ts . add (fd) ;
24 return f ace ts ;
25 }
26

27 @Override
28 protected boolean doShutdown () {
29 return true ;
30 }
31

32 @Override
33 protected boolean doStartup () {
34 return true ;
35 }
36

37 }

Creating the servant and the facets

After creating the component, we must provide the servants that implement the com-
ponent facets. Considering the pingpong application, we must provide a servant for
thePingPong andinfoReceptacle facets. Listing 3 shows the implementation
of PingPongServant, which implements thePingPong facet. In line 19, the
infoReceptacle facet is obtained in order to manage the component connections.
In line 22, the object connected to the component receptacleis retrieved in order to call

5

theping method (line 29). Similarly, theping method obtains the object connected
to the component receptacle and calls thepong method of the object. Additionally,
thepong method obtains the object connected to the component receptacle and calls
theping method of the object.

Deploying the Component

The component may be deployed in a .jar file or as a collection of .class files. Either
way, it must be registered in thescs.properties file, included in directory <SCS-
Dir>/scripts/execute. Below, we have a sample from the scs.properties file:

component-PingPong-1=scs.demos.pingpong.servant.
PingPongComponent

jar-files=pingPong.jar
container.java = ../../scripts/execute/run-container.sh

The first line contains the mandatory prefix (component), followed by the name
and the version of the deployed component. The right from theequal sign is the full
package and class name for the component. The .class files should be in a directory
that is listed in the CLASSPATH of the Java environment. The second line should
be included only if the component is deployed as a .jar file. The third line is used
by the execution node to start a container process.container.java is a property
that indicates the script to be called when starting a container process. For Windows
platform the script to be called isrun-container-cmd. For Linux platform, the
script isrun-container.sh.

The scriptsrun-container.sh andrun-container.cmd contains a com-
mand line to start the container application. Therefore, before running the examples,
set the JAVA_HOME variable in the scripts to reflect the path where java is installed.

Loading the Component

In this section we describe how containers are created to host component implementa-
tions. A client application that instantiates and deploys aPingPongComponent
component is illustrated in listing 4. First, the application gets a reference to the
ExecutionNode component representing the node where the component will be
executed. In this example, this is done using the JDK Name Service (line 12). Calling
methodgetFacet, the application obtains a reference to theExecutionNode fa-
cet (line 15), which, in turn, is used to invoke thestartContainer method (line
25). This method creates and returns a reference to the container component, in which
an instance ofPingPongComponent will be loaded. In the next step, the appli-
cation gets the container’sComponentLoader facet and invokes theload method,

6

passing as parameter theComponentId structure, representing thePingPongComponent
implementation (lines 30- 39). This method returns a handleto thePingPongComponent
instance just created. By calling methodstartup (line 40), the instance is acti-
vated and calling method getFacet (line 45), the application gets a reference to the
PingPong facet.

Since the instances were created, the application resolve their dependences, con-
necting the two instances through their receptacles (lines53- 66). Finally, thestart
method is invoked in both components in order to start the message exchange.

4 Running the example

The PingPong demo can be executed by running the following commands:

1. Run the ORBD. The ORBD is the ORB name service included withthe JDK.
It is used by the application to locate the Execution Node by name, instead of
using the object’s IOR. In Windows use the following commandto start ORBD:

> start "ORBD" orbd.exe -ORBInitialPort 1050
-serverPollingTime 200

In Linux, use the following command to start ORBD:

> orbd -ORBInitialHost localhost -ORBInitialPort 1050
-serverPollingTime 200

2. Edit the scs.properties file to set the environment configurations.

3. Edit the run-container scrip (sh or cmd) and set the JAVA_HOME variable to
point to the path where java is installed.

4. Run the Execution Node. Considering the SCS-Java root directory (<SCS-
DIR>/src/java), the command to start an Execution node is:

> java scs.execution_node.servant.ExecutionNodeApp
../../scripts/execute/scs.properties

5. Run the Ping Pong Application. Considering the SCS-Java root directory (<SCS-
DIR>/src/java) the command to run the application is:

> java scs.demos.pingpong.servant.PingPongApp

7

This command creates two component instances in the same machine. In order
to run instances in different machines, one should provide the hosts and ports,
as described bellow:

> java scs.demos.pingpong.servant.PingPongApp
<host-1> <port-1> <host-2> <port-2>

5 Miscellaneous

The SCS-Java package is provided with some scripts to help running the application.
Those scripts are available in the <SCS-DIR>/scripts/execute directory. Also, for Li-
nux platforms, a makefile is provided in directory <SCS-DIR>/src/java. The makefile
can be used to compile the SCS-Java package. To use this option, edit the makefile
and set the JAVA_HOME variable properly.

6 Conclusion

The example shown is just the startup for the developer to getto know with the SCS
Java component system. A real example would be much longer and more complex, but
the focus would be taken away from the core of the component system. We recommend
the execution of the sample code to illustrate the dynamics of the component system
and the relationship between its main entities.

8

Listing 3: Servant implementing the PingPong interface
1 public class PingPongServant extends PingPongPOA {
2 pr ivate i n t i d e n t i f i e r ;
3 pr ivate PingPongComponent pingpong = nul l ;
4 pr ivate IReceptacles in foReceptac le = nul l ;
5 pr ivate Connect ionDescr ip t ion conns [] ;
6 pr ivate i n t pingPongCount ;
7

8 public PingPongServant (PingPongComponent pingpong) {
9 th is . pingpong = pingpong ;

10 }
11 public void se t Id (i n t i d e n t i f i e r) {
12 th is . i d e n t i f i e r = i d e n t i f i e r ;
13 }
14 public i n t ge t Id () {
15 return i d e n t i f i e r ;
16 }
17 public void s t a r t () {
18 pingPongCount = 10;
19 i n foReceptac le = IReceptaclesHelper . narrow (pingpong . getFacetByName
20 (" in foReceptac le ")) ;
21 t r y {
22 conns = in foReceptac le . getConnections (" PingPong ") ;
23 } catch (Inval idName e) {
24 e . pr in tStackTrace () ;
25 }
26 i f (i d e n t i f i e r ==1) {
27 for (i n t i = 0 ; i < conns . leng th ; i ++) {
28 PingPong ppFacet = PingPongHelper . narrow (conns [i] . o b j r e f) ;
29 ppFacet . p ing () ;
30 }
31 }
32 }
33 public void stop () {
34 pingPongCount = 0 ;
35 }
36 public void ping () {
37 for (i n t i = 0 ; i < conns . leng th ; i ++) {
38 PingPong ppFacet = PingPongHelper . narrow (conns [i] . o b j r e f) ;
39 System . out . p r i n t l n (" Received ping from " + ppFacet . ge t Id ()) ;
40 ppFacet . pong () ;
41 }
42 }
43 public void pong () {
44 for (i n t i = 0 ; i < conns . leng th ; i ++) {
45 PingPong ppFacet = PingPongHelper . narrow (conns [i] . o b j r e f) ;
46 System . out . p r i n t l n (" Received pong from " + ppFacet . ge t Id ()) ;
47 i f (−− th is . pingPongCount > 0) {
48 ppFacet . p ing () ;
49 }
50 }
51 }
52 }

9

Listing 4: PingPong Application
1 public class PingPongApp {
2 pr ivate s ta t ic f i n a l St r i ng EXEC_NODE_NAME = " ExecutionNode " ;
3 pr ivate s ta t ic f i n a l St r i ng EXEC_NODE_FACET = " scs : : execution_node : : ExecutionNode " ;
4 pr ivate s ta t ic f i n a l St r i ng CONTAINER_NAME = " PingPongDemoContainer " ;
5 pr ivate ExecutionNode [] execNode = nul l ;
6 pr ivate IComponent con ta i ne r
7 / / . . .
8

9 corbaname = " corbaname : : " + host + " : " + po r t + " # "
10 + EXEC_NODE_NAME ;
11 t r y {
12 org .omg.CORBA. Object ob j = orb . s t r i n g _ t o _ o b j e c t (corbaname) ;
13 IComponent execNodeComp = IComponentHelper . narrow (ob j) ;
14 execNodeComp . s ta r tup () ;
15 Object ob = execNodeComp . getFacet (EXEC_NODE_FACET) ;
16 execNode [i] = ExecutionNodeHelper . narrow (ob) ;
17 } catch (SystemException ex) {
18 / / . . .
19 }
20 t r y {
21 Proper ty prop = new Proper ty () ;
22 prop . name = " language " ;
23 prop . value = " java " ;
24 Proper ty propSeq [] = { prop } ;
25 con ta i ne r = execNode . s ta r tCon ta i ne r (CONTAINER_NAME, propSeq) ;
26 con ta i ne r . s ta r tup () ;
27 } catch (Conta inerA l readyEx is ts e) {
28 / / . . .
29 }
30 ComponentLoader loader = ComponentLoaderHelper . narrow (con ta i ne r
31 . getFacet (" scs : : con ta i ne r : : ComponentLoader ")) ;
32 ComponentId ppCompId = new ComponentId () ;
33 ppCompId . name = " PingPong " ;
34 ppCompId . vers ion = 1;
35 ComponentHandle ppHandle = nul l ;
36

37 for (i n t j =0; j <numComponentPerNode ; j ++) {
38 t r y {
39 ppHandle = loader . load (ppCompId , new St r i ng [] { " " }) ;
40 ppHandle . cmp . s ta r tup () ;
41 } catch (ComponentNotFound e) {
42 / / . . .
43 }
44 PingPong p = PingPongHelper . narrow (ppHandle . cmp
45 . getFacetByName (" PingPong ")) ;
46 p . se t Id (i d) ;
47 i f (i d ==1)
48 pp1Component = ppHandle . cmp;
49 else
50 pp2Component = ppHandle . cmp;
51 i d ++;
52 }
53 IReceptacles i n fo1 = IReceptaclesHelper . narrow (pp1Component
54 . getFacetByName (" in foReceptac le ")) ;
55 IReceptacles i n fo2 = IReceptaclesHelper . narrow (pp2Component
56 . getFacetByName (" in foReceptac le ")) ;
57 PingPong pp1 = PingPongHelper . narrow (pp1Component
58 . getFacetByName (" PingPong ")) ;
59 PingPong pp2 = PingPongHelper . narrow (pp2Component
60 . getFacetByName (" PingPong ")) ;
61 t r y {
62 i n fo1 . connect (" PingPong " , pp2) ;
63 i n fo2 . connect (" PingPong " , pp1) ;
64 } catch (Inval idName e) {
65 / / . . .
66 }
67 pp2 . s t a r t () ;
68 pp1 . s t a r t () ;
69 }

10

