
Image-Based Motion Blur for Stop Motion Animation

Gabriel J. Brostow Irfan Essa

GVU Center / College of Computing
Georgia Institute of Technology

http://www.cc.gatech.edu/cpl/projects/blur/

Abstract

Stop motion animation is a well-established technique where still
pictures of static scenes are taken and then played at film speeds
to show motion. A major limitation of this method appears when
fast motions are desired; most motion appears to have sharp edges
and there is no visible motion blur. Appearance of motion blur is a
strong perceptual cue, which is automatically present in live-action
films, and synthetically generated in animated sequences. In this
paper, we present an approach for automatically simulating motion
blur. Ours is wholly a post-process, and uses image sequences,
both stop motion or raw video, as input. First we track the frame-
to-frame motion of the objects within the image plane. We then in-
tegrate the scene’s appearance as it changed over a period of time.
This period of time corresponds to shutter speed in live-action film-
ing, and gives us interactive control over the extent of the induced
blur. We demonstrate a simple implementation of our approach as
it applies to footage of different motions and to scenes of varying
complexity. Our photorealistic renderings of these input sequences
approximate the effect of capturing moving objects on film that is
exposed for finite periods of time.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation—display al-
gorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation; I.4.9 [Image Processing and Computer Vision]: Scene Analysis—Time-
varying Images

Keywords: Animation, computer vision, image-based rendering, motion blur, stop

motion animation, temporal antialiasing, video post-processing.

1 Introduction

Stop motion animation is a widely respected and traditional pro-
cess for generating movies. Chicken Run, Wallace and Gromit, and
Nightmare Before Christmas are some of the recent feature works
following from earlier productions like King Kong. Stop motion
is also widely used to generate dynamic (and controlled) effects in
regular productions [17]. The process of stop-motion animation is
laborious, requiring that each scene be photographed after being
moved and modified incrementally [12]. Talented animators show
very elaborate and detailed motions of characters and objects with
varying speeds and trajectories. A tool unavailable to these anima-
tors is one that would aid in the generation of motion blur between

Figure 1: The miniKingKong stop motion sequence was shot by
manually rotating the propeller. The top two images are original
frames and the bottom image shows a blurred propeller as rendered
automatically from that input.

static frames to show fast motions. We address this problem with a
technique that functions as a post-process, requiring no extra work
on the part of the animator.

The presence of motion blur is very important perceptually. Like
many artifacts of photo imagery, one usually only notices its ab-
sence; it’s presence gives an air of realism [9, 13]. In addition, with-
out motion blur, animated image sequences are more susceptible to
strobing effects and aliasing in time. Motion blur is a well-studied
topic in computer graphics, with commercially available software
and hardware solutions that aid in the synthesis of realistic motion.

Stop-motion animators toil to prevent audiences from being dis-
tracted by the lack of motion blur by changing the pose of their
characters between frames only slightly. In addition, several tricks
that involve deforming objects and repeated film exposures are also
employed. Further, a mechanical technique called “go-motion”
was developed at Industrial Light and Magic and was first used in
the 1981 film Dragonslayer [17]. This technique uses computer-
controlled armatures to effectively enhance the motion of stop mo-
tion animated creatures.

1.1 Related Work

Film exposed to live action implicitly contains motion blur, which
guarantees that fast objects will be registered differently than slow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

moving ones. At present, only research in computer animation has
addressed the problem of creating photorealistic motion blurred im-
ages. Antialiasing of time-sampled 3D motion is now a standard
part of most rendering pipelines.

The seminal work in motion blur was first introduced in 1983 by
Korein and Badler [11], and Potmesil and Chakravarty [14]. Kor-
ein and Badler introduced two approaches, both modeled after tra-
ditional cartoonists’ work. The first implementation parameterized
the motion over time of 2D primitives such as discs. The second
relied on supersampling the moving image and then filtering the
resulting intensity function to generate images with superimposed
multiple renderings of the action. The resulting images look like
multiply exposed film.

Potmesil and Chakravarty proposed a different method for blur-
ring motion continuously. A general-purpose camera model accu-
mulates (in time) the image-plane sample points of a moving object
to form a path. Each sample’s color values are then convolved with
that path to generate finite-time exposures that are photorealistic.

The most significant subsequent development in antialiasing in
the time domain came with the distributed raytracing work of
Cook et al. [6]. This work successfully combines image-space an-
tialiasing with a modified supersampling algorithm that retrieves
pixel values from randomly sampled points in time.

These algorithms cannot be applied directly to raster images
of stop motion animation because the transformation information
about the scene is absent. Both convolution with a path and super-
sampling that path in time require that the motion be fully speci-
fied while the “shutter” is open. Raster images of stop motion are
effectively snapshots, which in terms of motion, were shot with
an infinitely fast shutter. While only the animator knows the true
paths of the objects, visual inspection of the scene allows us to in-
fer approximations of the intended motion paths. Cucka [7] man-
aged to estimate localized motions when developing a system to
add motion blur to hand-drawn animations. Much like the commer-
cial blur-generation and video-retiming packages currently avail-
able, only small frame-to-frame motions are tracked successfully,
and pre-segmentation must be done either by hand or as part of the
animation process.

Our approach is entirely image-based. Animators can adjust the
extent of the generated blur to their liking after the images are
acquired. We take advantage of well-established computer vision
techniques to segment and track large motions throughout a se-
quence. Our proposed techniques rely on combinations of back-
ground subtraction and template matching in addition to the previ-
ously explored capabilities of optical flow and visual motion com-
putations. Though existing techniques for encoding motions are
becoming quite refined (e.g., MPEG-4 [10]), such methods are not
sufficient for our needs.

1.2 Overview

We are interested in changing the regions of an image sequence
which correspond to stop motion activity to show motion blur. Our
goal is to give the user control over the amount of blur, and to per-
form the rest of the process as automatically as possible. One major
task is the detection and extraction of regions that are affected by
movement in consecutive frames.

To help determine the correspondence between pixels in two
consecutive frames, we initially group neighboring pixels within
each image into blobs, and these are assumed to move indepen-
dently (Section 2). The affine transformations of these blobs are
tracked and recorded as pixel-specific motion vectors. These vec-
tors may subsequently be refined individually to model other types
of motion. Once the motion vectors adequately explain how the pix-
els from a previous image move to their new positions in the current
image, each pixel is blurred (Section 3). The pixel color values are

redistributed according to the distance traveled, so that pixels with
null vectors are unchanged while pixels with long motion vectors
are convolved (or smeared) in accordance with that path. Finally,
we demonstrate the various results rendered by our experimental
implementation (Section 4). Figure 2 illustrates our pipeline graph-
ically.

Figure 2: Using frames from the film Chicken Run, and starting
with the inset of the top image, each level represents a stage of
our technique: segmentation, rigid blob tracking, flow correction,
and accumulation of smeared samples. Combined, they yield the
blurred image of Rocky rolling backwards on the tricycle.

2 Finding Pixel Transformations

Ideally, we desire the same 3D transformation data as is available
to mesh-based animation renderers. Some structure-from-motion
and scene reconstruction techniques, studied by computer vision
researchers, are capable of extracting such pose information from
certain classes of image sequences [8]. They usually seek optimal
scene geometry assuming that a single motion, like that of the cam-
era, caused all the changes in the scene. Footage containing articu-
lated characters is troublesome because multiple motions contribute
to the changes. Ours is consequently a rather brute-force but gen-
eral purpose 2D motion estimation method. The resulting system is
but a variant of the possible motion estimators that could satisfy the
needs of our approach. The following description explains how to
handle objects that are traveling large distances between subsequent
frames.

2.1 Scene Segmentation

The task of segmenting and grouping pixels that are tracked is sim-
plified by the high quality of the footage captured for most stop
motion animations. Additionally, scenes shot with a moving cam-
era tend to be the exception, so background-subtraction is a natural
choice for segmenting the action.

If a clean background plate is not available, median filtering in
the time domain can usually generate one. We observe a pixel loca-
tion over the entire sequence, sorting the intensity values (as many
as there are frames). By choosing the median, the background can
be reconstituted one pixel at a time. This highly parallelizable pro-
cess results in choosing the colors which were most frequently sam-
pled by a given pixel, or at least colors that were closest to doing so.
Given a reasonably good image of the background (Ib), the pixels
that are different in a given frame (If) are isolated. An image (Im)
containing only pixels that are moving is obtained according to this
criterion:

Im(x, y) =

�
If (x, y) |If (x, y) − Ib(x, y)| > threshold

0 otherwise
(1)

A good threshold value, that worked on all sequences we pro-
cessed, was 7.8% of the intensity scale’s range. Note that we use
grayscale versions of our color difference images when comparing
against this threshold. Each contiguous region of pixels within Im

is grouped as a single blob (b), with the intent of locating it again
in the subsequent frame. Naturally, blobs representing separate ob-
jects can merge and separate over time, depending on their proxim-
ity. While this has not been a problem for us, it can be dealt with
by using color-similarity and contour-completion as supplementary
means of chopping the scene into manageable blobs. These future
extensions would also help in dealing with footage shot with a mov-
ing camera.

2.2 Blob Tracking

Objects, and therefore the blobs that represent them, can move sig-
nificantly between frame i and frame i + 1. To determine the paths
along which blur will eventually take place, we must first find a
correspondence which maps each blob to its appearance in suc-
cessive frames. This motion estimation is a long-standing vision
research problem. Large regions of solid color and non-uniform
scene-lighting compound the violation of the optical flow constraint
equation. Hierarchical techniques, some of which include rigid-
ity constraints, have been developed to make this problem more
tractable. Bergen et al. [1] developed a hierarchical framework
which unifies several parameter-based optical flow methods. These

ReelSmart Motion Blur
(Blur Amount = 0.25)

Our Method
(exposure = 0.29sec)

Figure 3: The same sequence was processed using both a commer-
cial motion blur package and our technique. The close-up on the
left shows that the interframe motion was too large because the hi-
erarchical flow vectors have affected the parts of the background
visible between the moving wheels. Our results on the right give a
stronger indication that movement is occurring from left to right.

help to constrain the motion of the trouble spots, though a more re-
cent work [16] shows more promise for the large motions we must
handle. Tweed and Calway perform block-based translational mo-
tion estimation followed by a partial-correlation pass which refines
the segmentation blocks to meaningful shapes. While rotations and
translations greater than half a block-size are not yet handled, oc-
clusion information is handled explicitly.

To deal with footage containing both substantial translation and
rotation, our two-pass approach starts with a non-local search be-
fore verifying with proximity dependent techniques. For this pur-
pose, we perform a rather exhaustive search by evaluating the sim-
ilarity between each blob b in Im(i) with the blobs in Im(i + 1),
referred to here as the sets B(i) and B(i + 1) respectively. A fully
exhaustive search would entail rotating various scaled versions of a
blob b by small angular increments, and testing it’s correlation with
B(i+1), centered on each possible (x, y) location. Eventually, one
would expect to find the rotation, translation, and scale parameters
which would best transform all the blobs in B(i) to look like blobs
in B(i + 1).

Here, we make two assumptions about our footage that do not
compromise our goals, have minimal impact on our results, and
allow for a more efficient parameter search. These assumptions are:
(a) scale does not significantly affect the appearance of an object in
consecutive frames, and (b) the extent of rotation can be determined
by evaluating absolute orientations of all blobs. The orientation (θ)
is found for each blob using its first and second normalized central
moments u(x,y), which essentially measure the asymmetry about
the x and y axes.

θ =
1

2
tan−1

�
2u(1,1)

u(2,0) − u(0,2)

�
, (2)

where each blob’s different moments u(m,n), are calculated as:

u(m,n) =

bhX
j=1

bwX
k=1

(xk − x0)
m (yj − y0)

n Im(k,j)

ba
2

, (3)

where bw, bh are the width and height of the blob and ba is its area
measured in pixels.

Taking each b(i) in turn, we generate as many rotated versions
of it as there are elements in b(i + 1), plus an additional one repre-
senting the possibility that no rotation is occurring. Each version of
b(i) is template-matched against Im(i + 1). This way, each rendi-
tion of b(i) is found to have a translational offset which maximizes

the normalized cross correlation (NCC). The normalized correla-
tion between a blob’s pixel values, b(x, y), and an image, I(x, y),
is calculated at each coordinate as:

NCC =

bhX
j=1

bwX
k=1

b(k, j) I(x + k, y + j)

vuut bhX
j=1

bwX
k=1

b(k, j)2

bhX
j=1

bwX
k=1

I(x + k, y + j)2
! . (4)

The version of b(i) which achieves the highest correlation score
(usually above 0.9) is recorded as the best estimate of a blob’s mo-
tion between frames i and i + 1. It is interesting to note that with
objects entering and leaving the scene, the best translation and ro-
tation parameters often push a blob beyond the image boundaries.

2.3 Flow Correction

The current blob tracking results represent the best estimate of the
rotations and translations performed by the objects in the scene.
By applying the respective 2D transformations to each blob’s con-
stituent pixel coordinates, a vector map Vi, representing the move-
ment of each pixel from its original location is obtained. A current
estimate of If (i+1), called Ir(i+1), is regenerated by applying the
Vi vectors to If (i). Ideally, Ir(i + 1) would look like If (i + 1)
if all the motions were purely due to translation and rotation. In
practice, other transformations and lighting changes combine with
the effects of perspective projection to reveal that we must locally
refine the motion estimates. Since there is a large selection of al-
gorithms for computing visual motion, we tried several different
ones and are now using a slightly modified version of the method
proposed by Black and Anandan [2]. This method computes hier-
archical optical flow to find the motion vectors which best warped
Ir(i + 1) to look like If (i + 1). The benefits of other local-motion
estimation algorithms can be significant, but each has a breaking
point that can be reached when the frame-to-frame deformation or
lighting changes are too large.

Estimating optical flow allows for the creation of a map of cor-
rective motion vectors. The map is combined with the initial mo-
tion vectors in Vi. Ir(i+1) images regenerated using the corrected
Vi’s now have fewer visible discrepancies when compared against
their intended appearance (see Figure 2).

3 Rendering Blur

The frame-to-frame transformations intended by the animator have
now been approximated. We proceed to interpolate paths along
which pixels will be blurred.

A Vi map tells us where to move the pixels sampled at time
ti (timestamp of frame i) to make them look like If (ti + 1), the
image sampled at frame i + 1. To render the simulated object mo-
tion, which is supposed to be occurring between these discrete time
samples, the intermediate pixel motion must be interpolated. For
simplicity, we started with linear interpolation, though B-splines
are more appropriate for arching motions. We model the path fol-
lowed by a pixel over time, or its locus, as a function Li(x, y, t).
The function reports the interpolated offsets of a pixel that was at
(x, y) at time ti (see Figure 4). The locus is a parametric function
of time with units in pixels, valid over the period from t = ti to
t = ti+1. We assume that a pixel’s locus most faithfully represents
the true motion of a pixel at the times immediately surrounding ti.
Therefore, motion blur is generated based on the events immedi-
ately before and after each picture was shot, rather than sampling
L(t) at some other phase or frequency.

c

s

2

t=a t=b t=ti+1t=ti

L(t)

w(0,1)

‹ ›0,10,0 ‹ ›0,2

‹1 ›,0

‹ ›

Figure 4: Color pixel c moved according to the dotted path L. After
choosing a desired shutter speed s, c’s RGB values are redistributed
according to the time it spent moving through each pixel.

3.1 Smearing Pixels

We now tie together the extracted information to actually simulate
film that was exposed to our scene’s motions for finite periods of
time. The animator who posed the scene, shot it at a period of τ
seconds between samples, corresponding to the inverse of the in-
tended playback frame-rate. The real camera’s actual shutter speed
only affected intensity. Thus, we refer here to shutter speed s as the
time during which our virtual camera is exposed to the interpolated
pixel motions. For example, for a playback τ of 1/24 sec., a typical
s might be 1/58 sec., but will rarely exceed τ .

To render a simulated exposure time, non-zero motion dictated
by each Li(x, y, t) is integrated for a total of s seconds: half be-
fore and half after ti. Let us first discuss the blurring of motion
occurring after time ti, noting that we process one pixel at a time,
independently of the rest. This will result in a blurred image we call
IAft(ti). It is worth noting that Cabral and Leedom [5] demon-
strated a variant of their Line Integral Convolution which used the
vector field magnitude to vary the length of the line integral to ren-
der blur. However, the approach below is simpler and does not suf-
fer from singularities when adjacent streamline cells point at each
other.

First, the valid interval of Li(x, y, t) is plotted on a blank grid of
pixels, approximated for efficiency as square shaped (see Figure 4).
The relevant interval is from ti to ti +s/2, and the pixel in question
can be represented by color c =R, G, B. We found it impractical to
actually create a box filter in the shape of L and convolve c with
it. To preserve the original intensity of each image, we distribute c
along the interval of L, proportionately with the fraction of time that
pixel spent occupying each grid-square. This fraction of the path
(w(x,y)) which fell within a given destination pixel’s boundaries
[a, b] for a time period of a ≤ t ≤ b, is calculated as follows:

w(x,y) =

Z b

a

0
@
s�

dx

dt

�2

+

�
dy

dt

�2

1
A dt

s/2
, (5)

where both x and y can be expressed as parametric functions of t. A
form of stylized motion blur is also possible. Instead of weighting
all the points on the locus equally, one can bias the weighting to
emphasize the beginning or end of a motion, making the individual
streaks look more like comets.

The color values of each destination pixel at a given (x, y) loca-
tion are incremented by cw(x,y). This way, each destination pixel
accumulates a smeared (dimmer but same color) version of all the
moving pixels that passed through it. Also, an accumulator-image
keeps count of the total w(x,y) deposited at each location.

The same procedure just followed in rendering IAft(ti), the mo-
tion of If (ti) from ti to ti + s/2, can now be repeated to generate

Figure 5: Jackie Chan in an episode of the PJs is shown jump-
kicking. The bottom image was rendered with a simulated shutter
speed of 0.025 seconds.

IBef(ti): the motion of that image from ti to ti − s/2. In con-
trast to the IAft case, the L used here comes from traveling along
the Li−1(t) obtained from estimating the motion of the image se-
quence in reverse.

3.2 Compositing Pixel Motion

The IBef(ti) and IAft(ti) can be regarded as two pieces of exposed
film, each having witnessed half of the motion occurring during s.
Since each image was normalized with respect to c, merging the two
means performing a pixel-wise average. Adding the two occupancy
maps together reveals that many pixels have been exposed for less
than s seconds.

Pixels that exhibited no motion have zero occupancy, and other
pixels may have been visited by motion only briefly. The remaining
time must be accounted for by blending in a proportional amount,
(s − w(x,y))/s, of a static pixel located at that (x, y). For pixels
where Im(x, y) is 0, that pixel is taken from Ib, and it is taken from
If otherwise.

4 Discussion and Results

To test our algorithm, we shot stop motion footage of our own and
digitized sequences made by professional studios. We tested clips
from Chicken Run, The PJs, and The Life & Adventures of Santa
Claus. Figure 5 shows a representative input and output pair. Note
that the previous and subsequent frames of the input sequence were
also used to make each blurred image.

After the motion has been estimated once, the rendered motion
blurred image sequence looks as if the objects were moving while
the shutter was open. The user-controlled virtual shutter speed s

Figure 6: The PJs character ”The Clapper” is twirling his weapons
while running forward. Two shutter speeds, 0.025 and 0.058 sec-
onds, were chosen to render the left and right images respectively.

allows for the same motion to be rendered with more or less blur,
as seen in Figure 6.

Our own footage proved to be more challenging because of the
overall lower quality, including bad lighting and large inter-frame
motions. One sequence included clay and a stick rotating like a pen-
dulum. The large motions are detected and the pendulum appears
blurred in Figure 7, in accordance with the linear interpolation of
its motion. The results break down if s is long enough to integrate
the pixels’ locus functions when they poorly model the object’s ac-
tual motion. The pendulum contains motion that would be better
served by interpolating the path to fit a B-spline, though this too is
not a general solution because other large motions might be better
modeled currently, with the linear interpolation.

The matter of shadows cast by moving objects deserves special
attention, and is still not fully resolved. Shadows incorrectly ap-
pear to our system as moving objects, and get blurred according to
the same rules (see Figure 8). The texture under a moving shadow
is not moving, and should therefore be left unfiltered. Shadows
of fast-moving objects should be broader and brighter because they
are purportedly the result of light being obscured during only part of
the exposure. Unfortunately, generating an accurate shadow with an
appropriately larger footprint requires knowing both the 3D geom-
etry of the shadowed region, and the locations of the light sources.

In contrast to CG-blurring, occlusions are not as critical in this
task because we are dealing with only the visible surfaces of our
scene. Nevertheless, we must be cautious not to smear the moving
pixels onto foreground objects that occlude the action. Such a fore-
ground mask can be painted by hand for each scene, but we have
successfully used a simplified implementation of [4] to accomplish
the same task automatically.

5 Summary and Future Work

The particular benefit of post-processing stop motion footage into
motion blurred renderings is the smoothness of fast motions, allow-
ing for better integration with live-action footage. Without resort-

Figure 7: The extended shutter speed of these blurred images re-
veals that this pendulum motion is being interpolated linearly.

Figure 8: Carpet appears to move when shadows pass over it.

Figure 9: The shutter speed of 0.025 seconds reveals in one still
that Bunty is pushing Babs on a swing in Chicken Run.

Figure 10: A dropping basketball was filmed with two cameras.
The left image was shot with a shutter speed of 0.001 seconds,
while the center image is from a camera with a 0.017 seconds shut-
ter. We processed the crisper sequence to render the image on the
right, simulating the the longer exposure. As expected, the blur has
been mimicked and the original lighting is retained.

ing to multiple-exposures or additional posing of the scene, even
individual frames can convey the motion that the animator intended
(see Figure 9). This approach can actually reduce the labor involved
in animating certain scenes. Potentially, fast motions, which have
normally been posed at higher frequencies to maintain visual con-
tinuity, will require no more posing than slowly moving objects.

While our approach emulates real motion blur successfully (see
Figure 10), certain areas deserve further attention so motion blur-
ring can become a general-purpose post-processing tool. It will be
interesting to incorporate other motion estimation algorithms, pos-
sibly stereo and 3D, to help with accurate frame-to-frame tracking
of pixels. The added benefit of range data will be the increased
precision in separating out and regenerating shadows.

Other curve-based interpolation algorithms could be evaluated
as models for pixel locus. We expect that at least in most cases,

even linear motions will yield reasonable results when modeled as
curves. A good motion blurring system might do well to have user
control of both shutter speed and interpolation type.

Finally, as motion estimation improves, a user-interface could
be added to allow animators to specify the elapsed time between
snapshots. These would correspond to keyframes that could subse-
quently be rendered out at the desired frame-rate and shutter-speed.

6 Acknowledgments

The full effect of our algorithm is only visible when tested on real
stop motion footage. We are very grateful to Lyndon Barrois, Will
Vinton Studios, Aardman Animations, and Dreamworks SKG for
providing permissions to use their movie clips. The copyrights of
these sequences are held exclusively by the respective companies:
PJs Episode ”The Last Affirmative Action Hero!” c©2000 Will Vin-
ton Studios; Chicken Run c©2000 DreamWorks, Pathe and Aard-
man. We thank RE:Vision Effects for their demo version of Motion
Blur v1.8.2. We also wish to thank Jerome Solomon, Christina de
Juan, and Elizabeth Greene for their help at different stages.

References

[1] J. R. Bergen, P. .J. Burt, R. Hingorani, and S. Peleg, Computing
Two Motions from Three Frames. In Proceedings of International
Conference on Computer Vision 1990, pages 27–32, 1990.

[2] M. J. Black, P. Anandan, The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields. Computer Vision and
Image Understanding, CVIU, 63(1), pp. 75-104, Jan. 1996.

[3] G. Bradksi and V. Pisarevsky. Intel’s computer vision library: Ap-
plications in calibration, stereo, segmentation, tracking, gesture, face,
and object recognition. In In Proc. of IEEE Computer Vision and
Pattern Recognition Conference 2000, volume II, pages II:796–797,
2000. Demonstration Paper.

[4] G. J. Brostow, I. Essa. Motion Based Decompositing of Video. In
Proc. of International Conference on Computer Vision, pages 8-13,
September 1999.

[5] B. Cabral and L. Leedom. Imaging Vector Fields Using Line Integral
Convolution, Proc. of ACM SIGGRAPH 1993, pages 263–270, 1993.

[6] R. L. Cook, T. Porter, L. Carpenter. Distributed Ray Tracing. In Proc.
of ACM SIGGRAPH’84, pages 137-145, July 1984.

[7] P. Cucka. Postprocess 2D Motion Blur for Cel Animation. In ACM
SIGGRAPH 1999 Conference Abstracts and Applications, Technical
Sketch, page 265, August 1999.

[8] O. Faugeras. Three-Dimensional Computer Vision : A Geometric
Viewpoint MIT Press, November 1993.

[9] T. Grimm, J. Burchfield, M. Grimm. The Basic Darkroom Book.
Plume, 3rd Edition, August 1999.

[10] H. Kalva. Delivering MPEG-4 Based Audio-Visual Services. Kluwer
Academic 2000.

[11] J. D. Korein, N. I. Badler. Temporal anti-aliasing in computer gen-
erated animation. In Proc. of ACM SIGGRAPH’83, pages 377-388,
July 1983.

[12] P. Lord, B. Sibley. Creating 3-D Animation : The Aardman Book of
Filmmaking Harry N. Abrams Inc., Publishers. October 1998.

[13] D. Morley. The Focal Guide to Action Photography. Focal Press,
London, 1978.

[14] M. Potmesil, I. Chakravarty. Modeling motion blur in computer-
generated images. In Proc. of SIGGRAPH 1983, pages 389-399, July
1983.

[15] T. Smith Industrial Light and Magic: The Art of Special Effects. New
York: Ballantine Books, 1986.

[16] D. Tweed and A. Calway. Motion Segmentation Based on Integrated
Region Layering and Motion Assignment. Proc. of Asian Conference
on Computer Vision, pages 1002–1007, January 2000.

[17] M. C. Vaz, P. R. Duigan, Industrial Light and Magic: Into the Digital
Realm. New York: Ballantine Books, 1996.

