
Simulating Decorative Mosaics

Alejo Hausner

University of Toronto

a b c d e f

Figure 1: By overwriting voronoi regions, tile centroids are displaced away from an edge. Recentering tiles at their new centroids eventually
moves them clear of the edge.

Abstract

This paper presents a method for simulating decorative tile mosaics.
Such mosaics are challenging because the square tiles that comprise
them must be packed tightly and yet must follow orientations cho-
sen by the artist. Based on an existing image and user-selected
edge features, the method can both reproduce the image’s colours
and emphasize the selected edges by placing tiles that follow the
edges. The method uses centroidal voronoi diagrams which nor-
mally arrange points in regular hexagonal grids. By measuring dis-
tances with an manhattan metric whose main axis is adjusted locally
to follow the chosen direction field, the centroidal diagram can be
adapted to place tiles in curving square grids instead. Computing
the centroidal voronoi diagram is made possible by leveraging the
z-buffer algorithm available in many graphics cards.

1 Introduction

Artists often invent techniques later used in computer graphics.
Tile mosaics, for example, are images made by cementing together
small polygonal coloured patches. They are early examples of im-
age synthesis techniques such as point sampling and rasters of pix-
els. However, ancient mosaicists avoided lining up their tiles in
rectangular grids of pixels, knowing that to the eye such grids em-
phasize horizontal and vertical lines. These lines are an artifact
which distracts the eye from seeing the image that the tiles describe.
On the contrary, they took pains to align tiles to emphasize edges
in the image at places of their own choosing. In Fig. 3, the artist
carefully chose tile shapes and orientations to portray human faces.

We can understand their motivation by considering the informa-
tion content of the resulting image. Aside from eliminating arti-

facts, a mosaic made up of N tiles can convey more information
than an image made up of N pixels, simply because tiles carry ex-
tra information, such as position, shape, and orientation, which the
human visual system can draw on.

1.1 The Problem

The goal of aligning square tiles with varying orientations is at odds
with the goal of minimizing visible grout (the substrate that shows
at gaps between tiles), or equivalently maximizing the area covered
by coloured tiles. The two goals are opposed because square tiles
can be arranged with maximal coverage only if all tiles have the
same orientation. Our problem may be stated more formally as
follows:

Formal Statement: Given a rectangular regionI2 in the
planeR2, and a vector field�(x; y) defined on that re-
gion, find N sitesPi(xi; yi) in I2 and placeN squares
of side s, one at eachPi, oriented with sides approx-
imately parallel to�(xi; yi), such that all squares are
disjoint and the area they cover is maximized.

The rectangular region covers a coloured image, and each square
will be uniformly coloured, representing the part of the image it
covers. The direction field� can be general, but in our application
tends to align tiles with edge features chosen by the user.

It may seem restrictive to use only square tiles, but we do so to
simplify the problem to one of placing point particles. Hand-crafted
mosaics tend to use mostly square tiles. Where they do not, we hope
that distorting some tiles will approximate the artist’s approach.

This paper presents a new technique for placing tiles. The
method is general, and can be extended to problems in computer
graphics and visualization, such as generating low-discrepancy
sampling patterns and vector field visualizations. Mosaics are but
one application.

The main contribution of this paper is a new method for finding
low-energy configurations of particles. The novelty lies in the use
of graphics hardware to automatically restrict the search for neigh-
bouring particles. The method can be adapted to other inter-particle
energy functions.
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Figure 2: Detail from “Sea Creatures”, Museo Nazionale, Naples,
1st century BC.

2 Related Work

Mosaic pictures survive from Greek and Roman times, 2000 years
ago (Figures 2 and 3 give two examples). However, attempts to
reproduce them using software are recent. Adobe Photoshopc


provides a mosaic-effect plugin with square tiles, but this merely
reduces spatial resolution (eg Fig. 9a). Haeberli [4] used voronoi
diagrams, placing the sites at random and filling each region with
a colour sampled from the underlying image. This approach tes-
selates the image, but tiles all have different shapes, and do not
attempt to follow edge features (Fig. 9b). Li and Milenkovic [9]
have demonstrated an algorithm that places pattern pieces on cloth
so that the least amount of cloth will be wasted when the pieces
are cut out, effectively packing polygons densely. Their approach
achieves packing efficiencies close to those of human experts, but
the nature of the medium (cloth) dictates that the polygons must
follow the grain of the cloth and not be rotated. Even so, packing
arbitrary polygons into a rectangular container is an NP-hard prob-
lem [11]. The polygons in our problem are simpler, but must be
rotated, so our goals are different. Moreover, we seek approximate,
aesthetically pleasing packings; we do not need maximum-density
packings.

Photomosaics [3, 12] approach the problem—representing an
image with coarse tiles—by using spatial detail in the tiles them-
selves: each tile is an image, shrunk to size, on a rectangular grid.
Their main task is searching a large database of images for one that
approximates a block of pixels in the main image. Though impres-
sive images are achieved in this way, their techniques do not address
our needs. Another technique, “Escherization” [7], produces tilings
of the plane using slightly-distorted versions of images, but relies
on symmetry groups and regular tilings. We seek irregular dense
tilings.

Work by Szeliskiet al [13] resembles our approach. They use
oriented particles to interpolate surfaces and to control surface de-
formations. Each surface particle exerts an orientation-dependent
force on others. Particles are placed by finding low-energy configu-
rations numerically. They accelerate the task of computing all inter-
particle forces (the brute-force approach takesO(n2) time) through
the use of a spatial hierarchy. Our approach uses graphics hard-
ware to find analogous minimum-energy configurations. Deussen
et al [1] use Lloyd’s method [10] to spread ink dots in a stippling
pattern. Round ink dots have no preferred orientation, unlike square

Figure 3: Detail from “The Betrayal”, St. Apollinarie Nuovo,
Ravenna, early 6th century.

tiles, but otherwise their goals are very similar to ours. Hertzmann’s
painterly renderings [5] emphasize edge features by using image
gradients to orient progressively smaller curved paint strokes.

2.1 Challenges

To produce a smooth–looking flow of tiles, which follow the edges
they want, mosaicists first set down tiles one at a time and then
adjust all the tiles until the spacing is uniform. Only then do they
cement the tiles into place. To reproduce this procedure algorithmi-
cally, we will also have to adjust each tile according to the direction
field, and according to its neighbours’ positions. Each adjustment
may require many other tiles to be adjusted in turn. To properly
adjust tiles, an algorithm that simultaneously optimizes all tile po-
sitions is needed. We find such a method in the centroidal voronoi
diagram.

2.2 Outline

The rest of this paper is organized as follows: Section 3 describes
a generalization of centroidal voronoi diagrams, and a method that
leverages graphics hardware to produce them. Section 4 presents a
way to obtain the direction field� from edge features in the image,
while sections 5 and 6 address tile adjustments that may be used to
enhance the final image. We present our results in section 7, and
close with suggested future work in section 8.

3 Our Approach

Our approach positions tiles using thecentroidal voronoi diagram
(CVD). A voronoi diagram on the plane is defined by a collection
of N sites, and divides the plane into N regions, such that all points
within a region are closest to its associated site. Figure 4a shows an
example. CVDs are voronoi diagrams with the additional property
that each site is located at the mass-centre (centroid) of its region.
Figure 4b shows a CVD.

CVDs are easily produced using Lloyd’s algorithm [10]: At each
iteration, the algorithm moves each site to its region’s centroid, then
re-computes the voronoi diagram. Its convergence properties are
only known in one dimension [2], but it seems to work quickly in
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Figure 4: a) Voronoi diagram; b) Centroidal voronoi diagram.
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Figure 5: a) Lloyd’s algorithm near convergence, for a manhattan
metric; b) Tiles arranged on a curved direction field.

practice. As mentioned in [1], Lloyd’s method suffers from fewer
oscillations than other particle-spreading techniques.

CVDs are useful because they cover space fairly. One of their
many uses includes sampling (they approximate a Poisson-disk
point distribution), and they sometimes occur in nature (a honey-
comb is a CVD). Locally, regions of a CVD often look like regular
hexagonal tilings. This tiling property suggests adapting them to
our purpose, but since we are using square tiles, we would prefer a
CVD that produces locallysquare, not hexagonal tilings.

After some consideration, it becomes clear that CVDs tend to tile
the plane with hexagons for the same reason that the densest pack-
ing of circles on the plane is hexagonal: such packings minimize
the Euclidean distance

p
(x1 � x2)2 + (y1 � y2)2. If we measure

distance differently, we should get different optimal packings. In
particular, square-grid packings minimize the manhattan distance
metric jx1 � x2j + jy1 � y2j (see Fig.5a). Hence CVDs for man-
hattan metrics will also be square tilings of the plane. If we adapt
CVDs further by varying the metric’s orientation, we should still
obtain packings that locally look like square tilings (eg, Fig.5b). All
that remains, then, is to find an efficient voronoi-diagram technique
for variable-orientation manhattan metrics.

Hoff et al [6] present a method (first proposed by Haeberli[4])
that can be extended to do the job. To draw a voronoi diagram,
they place an infinite cone at each site, with all apexes having the
samez coordinate. They then render the cones using an orthogonal
projection normal to the plane containing the sites. The rendering
algorithm solves the visibility problem, which coincidentally also
identifies the regions closest to each site. This is because a circular
cone’s explicit equation,z =

p
(x� x0)2 + (y � y0)2, embodies

the Euclidean metric. If we use a square pyramid,z = jx� x0j +
jy�y0j, we will obtain a voronoi diagram for the manhattan metric.
The following algorithm then emerges:

Algorithm:

1. S list of random points on the image.
2. repeat until converged:
3. for eachp in S, place a square pyramid with apex atp.
4. rotate each pyramid about thez axis to align it

with the direction field�(p).
5. render the pyramids with an orthogonal projection

onto thexy plane, producing a voronoi diagram.
6. compute the centroid of each voronoi region.
7. move eachp to the centroid of its voronoi region.
8. draw a tile centred at eachp, oriented along�.

The voronoi diagram in question can be approximated using the
z-buffer algorithm available in most graphics cards. If each site’s
pyramid is drawn with a different colour, the corresponding voronoi
regions will all have different colours. Note that this algorithm
does not directly obtain the combinatorial version of the voronoi
diagram—it does not identify each site’s neighbours—but we do
not need such information for our purposes. To be specific, step 6
of the algorithm is performed by reading back the frame buffer after
drawing, and, for each cone colour, taking the averagex andy of
its pixels.

We expect this approach to produce reasonable tilings when the
scale over which� varies is much larger than the tile size. We
have observed that if� varies too rapidly, the algorithm will fail
to converge. We leave a formal proof of this fact for future work.
On the other hand, such small variations could never be captured
by any tiling algorithm, since they fall under the minimum sample
spacing available with fixed-size tiles.

4 Direction Field

We now take up the issue of defining�, the direction field that con-
trols the orientations of the tiles. Since we will use tile directions
to accentuate edges, directions should be based on edge features in
the image. Generalized voronoi diagrams play a role here as well.
The method is essentially the same as that described by Hoff [6].

The desired field�(x; y) should follow an edge’s orientation if
(x; y) is near the edge. The gradient of the Euclidean distance from
the edge provides such a field: Ifs(t) is a planar curve (an edge
feature),P = (x; y) is a point not on the curve, andCs(x; y) is the
point ons closest toP , then the functionds(x; y) = jP (x; y) �
Cs(x; y)j is the point’s minimum distance from the edge. IfP is
close tos, the lineCsP will be perpendicular tos.

For a collectionS of curves, letdS(x; y) be the distance to the
nearest curve inS. For each curves in S, the surface whose ex-
plicit form is z = ds(x; y) resembles a long, curved mountain (s
is the mountain ridge). If we 1) draw such a mountain for every
curved edge feature in the image (with an orthogonal projection,
again using the z-buffer algorithm), 2) read back the z-buffer, and
3) numerically evaluate the gradientrz at each pixel, we obtain an
image-precision form of�, the direction field we need. In Figure 6b
we see perspective view of a set of curves, with associated ridges,
and the derived direction field.

5 Tile Variations

Now that we have a method for placing tiles, we can apply varia-
tions to make the tilings more expressive. The algorithm’s output is
a set of points (the locations of the tiles). Each point has an asso-
ciated orientation, which is applied to the tile. We can apply other
attributes to the tiles, such as colour, size, aspect ratio, and shape.
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Figure 6: Calculating the direction field: a) The original image,
with edge features drawn in yellow; b) The derived direction field.

5.1 Colour

To create a mosaic version of an image, tile colours should repre-
sent the image region they cover. Each tile colour may be either
a point sample from the pixel at the tile’s centre, or an average
over the pixels covered by the tile. Point samples work best for
images with uniformly-coloured regions, while area samples suit
continuous-tone images.

5.2 Size

Each tile site carries only position and orientation information, not
tile size, but we can obtain a good tile size by equating the total tile
area with the image size. For anh�w pixel image withn tiles, this
yields tiles with sides ofd = Æ

p
hw=n pixels. The factorÆ < 1

accounts for packing inefficiencies due to variations in�, although
a value ofÆ = 0:8 works in most cases, if all tiles are the same size.

As described above, variations in� smaller than a tile width
will not be captured by the algorithm. If such variationsmust be
expressed, smaller tiles may be used locally. Smaller tiles may
also be used in visually interesting areas, such as on lips and
eyes in a portrait. The algorithm can be adapted to use vary-
ing tiles sizes, by adding a slope variation� in the cone equation
z = �(jx � x0j + jy � y0j). If all tiles are positioned uniformly
at first, and their sizes are adjusted according to their position in
the image, Lloyd’s method will eventually pack them more densely
where smaller tiles are needed. However, sharp boundaries in tile
size greatly slow the convergence. Good tilings can be obtained
much faster by using rejection sampling to guide the initial sample
positions. An initial tile position will be accepted with probability
(smin=s)

2, wheres is the tile size andsmin is the smallest tile size
in the image.

5.3 Aspect Ratio

Often, fine detail is needed only near a curve, or in other places
where the direction field� must be strongly emphasized. We can
achieve this effect by using longer, narrower tiles where necessary.
Such tiles effectively visualize the underlying direction field. Mo-
saicists use this effect to simulate strands of hair. The effect can
be approximated by scaling the cone slopes non-uniformly, with a
variation� in the cone equation:z = �jx� x0j+ (1=�)jy � y0j.
Again, this adjustment must be applied not only to the final tiles,
but at each iteration, while regions are repositioned.

a

b

Figure 7: a) Initial voronoi diagram, with randomly placed tiles; b)
Voronoi diagram after 20 iterations.

6 Edge Avoidance

On opposite sides of an edge, the direction of� will change by
180Æ. However, square tiles are radially symmetric, so this change
does not come into play in Lloyd’s algorithm, and is not reflected in
the final result. Hence tiles near an edge will be oriented correctly,
but nothing prevents them from straddling the edge. Thus the edge
will lose definition. Fig. 1a illustrates this problem.

This problem can be easily overcome. At each iteration, each site
is moved to its region’s centroid. If some part of this region were
to be overwritten with a different colour, the calculated centroid
would change. By drawing the edges as thick lines with a distinct
colour, the straddlers’ centroids will be displaced away from the
edge (Fig. 1b), and each iteration will propel the sites away from
the edge (Fig. 1c). The withdrawal ceases when the tiles move off
the edge (Fig. 1d). These sites in turn tend to push their neighbours
away from the edge too, and the net result is to divide the mosaic
into clearly defined regions with gaps where the edges once were
(Fig 1e). A few iterations without the edges drawn will then fill in
the gaps without spoiling the edge definition (Fig. 1f).
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Figure 8: a)Voronoi diagram after edge avoidance; b) Final tiling,
using point sampling for tile colours.

7 Results

The algorithm’s progress is presented in Figures 6 through 8b.
Fig. 6a shows the original image, with manually chosen curves su-
perimposed where edge features must be emphasized, and Fig. 6b
shows how� is derived. The perspective view shows ridges at each
edge, and the height gradient that defines�. Fig. 7a shows initial
tile sites, with their voronoi diagram, and Fig. 7b shows the final
positions after 20 iterations. Notice that many tiles straddle edge
features. The edge-avoidance technique described in the previous
section is then applied, moving the voronoi regions off the edges
(Fig. 8a), yielding the final image in Fig. 8b.

As we discussed in the introduction, a mosaic made up ofN
tiles conveys more information than an image made up ofN pix-
els. We can see this in action by comparing Fig. 9a, an image of
Michelangelo’sLybian Sibyl that uses 2025 pixels, with Fig. 10a,
which better conveys the curving edges in the oracle’s arms and
robe, using the same number of tiles. The image can be improved
further by varying tile sizes judiciously according to background,
figure and detail. Background, figure and detail regions appear in
blue, green and magenta, respectively in Fig. 10b. The figure also
shows user-selected curves and the derived orientation field�. The
final mosaic appears in Fig. 10c.

Variable-sized tiles are again used for Hopper’sSecond Story

a

b

Figure 9: Lybian Sibyl a) using 2025 pixels; b) using Haeberli’s
technique.

Sunlight, in Fig. 11a. In Fig. 11b, based on a photograph of a
stained-glass window, tiles are aligned along dark leading lines in
the image. Both these tilings are based on images with clearly de-
lineated colour regions.

Figure 11c uses elliptical tiles instead of rectangular ones. In
this image, the tile size is chosen large enough to force overlaps be-
tween neighbours. Used in this way, the method serves to distribute
“paint” strokes over the image, creating a painterly effect.

Fig. 12a uses elongated tiles to emphasize the vertiginous curved
paint strokes in Munch’sThe Scream. The straight tile edges dis-
tract the eye from the curved paint strokes. Fig. 12b is more effec-
tive. It was created using Haeberli’s method, filling in the voronoi
regions corresponding to tiles in Fig. 12a.

Fig. 13 shows tilings based on photographs. We can see that
the lower-contrast image of the cat fares more poorly than the seal
because the figure’s furry boundary is not well represented by a
sharp change in tile size. Perhaps a gradation in tile sizes might be
more effective.

The algorithm is fast, though not real-time. Usually about 20 it-
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Figure 10: Lybian Sibyl a) using 2000 equal-sized tiles; b) back-
ground, figure and detail regions; c) using 2000 tiles in three sizes.
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Figure 11: a) Hopper’s “Second Story Sunlight”; b) Mosaic stained
glass, with dark leading lines emphasized; c) Sibyl using overlap-
ping oval tiles.



a

b

Figure 12: Munch’s “The Scream”, using a) long thin tiles and b)
Haeberli’s method on the corresponding voronoi regions.
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Figure 13: Tiled photographs of a) seal on beach b) cat in window.

erations suffice for an image with 1000 tiles. Each iteration takes
about one second for a 900�900 pixel image, on an 600 MHz Pen-
tium III workstation, with an Nvidia 32 MB Geforce Plus graphics
card. The time is dominated by the graphic card’s I/O, which limits
the frame-buffer readback needed to compute voronoi region cen-
troids. The resulting tiling is visually satisfactory long before an
exact CVD is obtained.

8 Conclusion

We have presented a new method to pack similar-shaped objects
along an imposed direction field, and applied it to simulating dec-
orative mosaics. The method produces good simulations, and is
general enough to be applied to other problems where a minimum-
energy configuration of particles is needed. The present work sug-
gests avenues for further research.



8.1 Future Work

The current approach uses only the first-order moment of each
voronoi region to obtain the region’s centroid, but higher moments
may yield more information. This may yield curvilinear, distorted
tiles which better follow the direction field and are densely packed.
Of course, this goes beyond the practices of traditional mosaicists.

Another way to obtain higher coverage is to “fill in” the gaps be-
tween tiles, which artisans do using small tile chips. Identifying the
gaps requires neighbour information, which is not explicit in the
image-precision approach used here, but which can be easily ob-
tained by finding adjacent distinct pixels. Some slight improvement
may be achieved by distorting square tiles into trapezoids, with dis-
tortion proportional to the direction field’s divergencer�� = r2z.
For this to be effective, edges must be at leastG1 smooth.

The technique by which� is derived is not the only one possible,
and has the drawback of extending the edge’s influence a long dis-
tance from it. More sophisticated user-defined direction fields may
be used. The packing algorithm assumes no special properties in�,
so many choices are possible.

The method’s use of initially random site positions is effective
because all tiles have the same shape. Thus it cannot be directly
used to pack polygons of different shapes. However, it may prove
fruitful in the later stages of such packing algorithms, when small
adjustments must be made.
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