
To appear, First International Symposium on Non-Photorealistic Animation and Rendering, June 5-7, 2000

Painterly Rendering for Video and Interaction

Aaron Hertzmann Ken Perlin�

Media Research Laboratory
Department of Computer Science

New York University

Abstract

We present new methods for painterly video processing.
Based on our earlier still image processing technique, we
“paint over” successive frames of animation, applying paint
only in regions where the source video is changing. Image
regions with minimal changes, such as due to video noise,
are also left alone, using a simple difference masking tech-
nique. Optionally, brush strokes may be warped between
frames using computed or procedural optical flow.

These methods produce video with a novel visual style
distinct from previously demonstrated algorithms. Without
optical flow, the video gives the effect of a painting that has
been repeatedly updated and photographed, similar to paint-
on-glass animation. We feel that this gives a subjective im-
pression of the work of a human hand. With optical flow, the
painting surface flows and deforms to follow the shape of the
world.

We have constructed an interactive painting exhibit, in
which a painting is continually updated. Viewers have found
this to be a compelling experience, suggesting the promise
of non-photorealistic rendering for creating compelling in-
teractive visual experiences.

CR Categories: I.3.3 [Picture/Image Generation]: Com-
puter Graphics—Display Algorithms; J.5 [Computer Appli-
cations]: Arts and Humanities—Fine Arts

Keywords: Non-photorealistic rendering, painterly ren-
dering, video processing, animation

�WWW: http://www.mrl.nyu.edu/fhertzmann,perling

Figure 1: A viewer interacting with a “living” painting.

1 Introduction

Graphics researchers have demonstrated many tech-
niques for producing dazzling and expressive still non-
photorealistic images, allowing users to quickly create
images that would previously require the labors of a skilled
artist. Of course, these systems do not replace artists for the
same reasons that cameras did not.

This paper builds on the still image research to address the
problem of producing non-photorealistic animations and in-
teractions. Here, instead of making a task faster and easier,
we are focused on making a taskpossible. Some of the inno-
vations required for non-photorealistic interaction are purely
algorithmic (e.g. silhouette detection [13, 5]). In other cases,
technological problems are tightly coupled to artistic prob-
lems (e.g. [2]). In particular, we are concerned with the
question: what can a painterly animation look like? This pa-
per presents several new tools that can be used in exploring
this design space. Similar explorations have occurred in ex-
perimental animation, although such work is limited by the
extreme amount of effort required to hand paint each frame.

Previous research can be categorized as either generating
representations of a painted world, or painted representations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NPAR 2000 Annecy France
Copyright ACM 2000 1-58113-277-8/00/6... $5.00 7

To appear, First International Symposium on Non-Photorealistic Animation and Rendering, June 5-7, 2000

of a world. The first of these approaches attaches stroke po-
sitions and sizes over time to 3D geometry [14, 12, 4]. This
usually gives the appearance of a “Painted World,” i.e. a
world inhabited by brush strokes. In contrast, Litwinowicz
[11] and Curtis [2] produce painted representations of the
world, by allowing strokes to detach from geometry, in both
space and time. We continue to explore this latter line of
research.

Our goal in this research is to make tools to allow artists to
create painterly animations and interfaces. For many appli-
cations, non-photorealistic animations and interfaces provide
distinct advantages: visual appeal, the visual and emotional
expression of physical media (e.g. brush strokes), informal
and compelling interfaces, reduced requirements for geomet-
ric modeling (when processing 3D), and cultural references
(e.g. animating existing paintings and styles).

1.1 Related Work

We now give a brief overview of research directly related
to this paper; see [3] for a more thorough survey of non-
photorealistic rendering. Haeberli [6] described automatic
and semi-automatic painterly rendering algorithms, exten-
sions of which are now commonly used in commercial desk-
top publishing software. Meier [14] attaches particles to 3D
objects by an automatic procedure, and places brush strokes
to coincide with the particles; the Deep Canvas system [4]
allows a skilled artist to paint curved strokes onto a model,
and then animate the painting. Litwinowicz [11] uses opti-
cal flow to push short brush strokes along scene movements,
and provides various tools [12] for editing/correcting flow
and layering. Hertzmann [7] automatically paints still im-
ages with various stroke sizes and shapes; in this paper, we
extend this method to processing video.

Previous work has applied interactive non-photorealistic
rendering to 3D modeling [18, 8], technical illustration
[13, 5, 15], education and entertainment [9]. The methods
in this paper are aimed at the last of these goals: building
tools that will allow artists to create compelling, enjoyable,
and expressive video and interfaces.

1.2 Overview

This paper is organized as follows. We begin by reviewing
our still image processing system, and show how this system
is extended to video. We then describe difference masking
techniques for reducing flickering in video, and the use of
optical flow to push strokes so as to follow the scene motion.
Several video experiments and an interactive exhibit are de-
scribed, followed by discussion and future work.

2 Still Images

In this section, we review a revised version of our still image
processing algorithm; a detailed description can be found in

[7]. This version uses a summed-area table [1] to quickly
compute blurred images. Furthermore, the paint function
takes an extra parameter, which allows us to choose whether
to force the first paint layer to cover the canvas.

The algorithm paints a rough sketch of the image with
large brush strokes, and then refines it with smaller brush
strokes, but only in regions where the painting does not
closely match the source image (e.g. where there is fine de-
tail in the source).

function paint(Is, // source image
Ip, // canvas; initially blank for still images
R1:::Rn, // brush sizes
firstFrame) // boolean;true for still images

Create a summed-area tableA from Is
refresh firstFrame
foreachbrush sizeRi, from largest to smallest,do

UseA to compute a blurred reference imageIRi

grid fgRi

Clear depth buffer
foreachposition(x; y) on a grid with spacinggrid

M the region[x� grid=2:::x+ grid=2;
y � grid=2:::y + grid=2]

areaError
P

(i;j)2M jjIp(i; j)� IRi
(i; j)jj

if refreshor areaError> T then
(x1; y1) argmax(i;j)2M jjIp(i; j)� IRi

(i; j)jj
paintStroke(x1; y1; Ip; Ri; IRi

)
refresh false

paintStrokeis the contour-following procedure defined in
[7]. It produces a set of sparse control points, from which
a smooth curve is computed by cubic B-spline subdivision.
Strokes are painted as triangle strips using graphics hard-
ware. Strokes are given random depth-buffer values to sim-
ulate the appearance of painting the strokes in random order.
In this paper,jj � jj denotes Euclidean distance in RGB space.
fg is a constant factor defined by the painting style.

3 Video

3.1 Painting Over

The simplest method for generating painterly video is to ap-
ply a still image filter to each frame independently. As has
been previously observed in the literature, subtle changes in
the input can cause dramatic changes in the output, creating
severe flickering in the output video. This flickering can be
characterized as static areas of the scene that are painted dif-
ferently in each frame. This flickering changes the character
of the input and distracts from the action in ways that are
usually undesirable.

The algorithm presented in the previous section leads to
a natural approach to improving temporal coherence. The
first frame of the video sequence is painted normally. For

28

To appear, First International Symposium on Non-Photorealistic Animation and Rendering, June 5-7, 2000

each successive frame, we “paint over” the previous frame1.
This means that the painting of the first frame is used as the
initial canvas for the second frame. Thepaint procedure is
called with this initial canvas andfirstFrameis set tofalse.
Consequently, unchanging regions of the video frame will be
left unchanged when the painting style is reasonably faithful
to the source image.

This method produces video with the appearance of a
painting that has been repeatedly painted over and pho-
tographed. This style is similar to the paint-on-glass style
in experimental animation, such as the work of Alexander
Petrov.

Though painting-over does improve temporal coherence,
flickering remains a problem, when a static region of a video
frame differs from the corresponding region of the previous
painted frame. This discrepancy can occur in several cases.
A significant source of error is video noise, which can cause
static areas of the scene to be repainted each frame. An-
other source of difference is stylization and “sloppiness” in
the painting: many painting styles produce images that rad-
ically diverge from the input. We address this problem by
performingdifference masking: we paint only in portions of
the video which contain significant motion. In offline pro-
cessing, we measure the sum of the differences between an
image region for the current frame and the corresponding
region for the previous frame. In terms of the above pseu-
docode, this amounts to adding the following test to the inner
loop ofpaint:

1

jM j

X

(i;j)2M

jjIt+1(i; j)� It(i; j)jj > TV

whereIt andIt+1 are successive video frames. If the test
fails, then no stroke may be placed for the regionM . Hence,
the conditional inpaint becomes: “if refreshor (frameDiff
> TV and areaError> T),” whereframeDiff is the sum of
the differences overM . For interactive applications, we use
a faster test that averages over an image region and compares
this average to the previous frame’s average:

1

jM j

������

������

X

(i;j)2M

It+1(i; j)�
X

(i;j)2M

It(i; j)

������

������
> TV

This test is computed in constant time using the summed-
area table.

An example sequence is shown in Figure 2.
This difference masking method will not detect gradual

changes over time, such as a fade-in or fade-out. We use a
variation on this method for such input sequences,cumula-
tive difference masking. A running cumulative sum of the
region image difference is kept for each regionM at each
scale. The cumulative sum is updated at each frame. When
a cumulative sum exceedsTV , it is reset to zero and a stroke
is painted.

1This method was demonstrated in the video portion of [7]. This method
also appears to be employed by Studio Artist [17].

3.2 Frame Rate

Video frame rate is an important factor in producing
painterly animation. In 30 Hz video, even minor flickering
can become highly objectionable, and the paint-over method
typically produces severe flickering in noisy or moving im-
age regions. A more fundamental issue is that 30 Hz video
can look “too real:” the underlying motion and shape is in-
tegrated so well by the human visual system that the video
begins to take on the character of ordinary video with bad
artifacts, rather than of a moving painting.

We find that 10-15 frames per second works well: enough
of the underlying motion is preserved without too much real-
ism, and flickering is much less objectionable. These frame
rates lend a stronger subjective impression of being hand-
painted, especially at 10 Hz, and especially for animations
with very little motion. It is not entirely obvious why; per-
haps we can mentally interpolate the human action of placing
each stroke between frames, or perhaps we are used to see-
ing hand-made animations at lower frame rates (animation
shot on “twos” is typically 12 fps or 15 fps). However, re-
ducing the frame rate is not always an option, especially for
live-action footage where a change in frame rate significantly
alters the character of the movie.

The choice of frame rate is part of a larger tradeoff be-
tween abstraction and fidelity to the input. It appears that
a similar frame rate was also used for “Impressions of San
Francisco” [10]. InWhat Dreams May Come,[12] these
problems were overcome by stylized motion and hand-edited
motion vectors.

3.3 Optical Flow

In the above paint-over algorithm, brush strokes stay fixed
on the image plane, even when the underlying object is mov-
ing. This gives the unusual, stylized effect of a continually-
smudged image plane, and is sometimes undesirable. Alter-
natively, we can move the brush strokes with the objects, as
suggested by Meier [14]. Litwinowicz [11, 12] proposed us-
ing optical flow to move brush strokes along the directions
of scene motion. We use this idea by warping the image and
painting-over. (Other features of Litwinowicz’ method are
more difficult to adapt.) Warping strokes also reduces flick-
ering, since the image being painted over should be a closer
match to the new video frame.

Optical flow is a measurement of object movement in a
video sequence; it is defined as the projection of world mo-
tion vectors onto the image plane. Given an object that
projects to a pixel(x; y) in framet of a video sequence, let
(x0; y0) be the projection of that same pixel in framet+1. If
the object is visible in each frame, then the optical flow for
that pixel is given byF (x; y; t) = (x0 � x; y0 � y). We use
Simoncelli et al.’s [16] probabilistic variant of coarse-to-fine
differential estimation to compute optical flow.

39

To appear, First International Symposium on Non-Photorealistic Animation and Rendering, June 5-7, 2000

The flow-based painting algorithm is as follows:

Paint the first frame
For each successive frame:

Warp previous source frame to current for difference mask
Warp all brush stroke control points to the current frame
Paint the current frame over the warped painting

As with previous methods, we warp control points, not the
bitmap. Warping the image can distort it in unpaintlike ways
— given an ideal flow field, it would give the look of texture-
mapping the painting onto the world.

Since we warp strokes by their control points and rerender,
we must store all brush strokes in memory. Consequently,
many brush strokes build up over time. We periodically cull
strokes that are completely hidden, by rendering every stroke
with a unique color and determining which colors are not
shown.

Processing a sequence with optical flow produces a no-
ticeably different effect than without. Instead of being con-
tinually repainted each frame, regions of the image move and
shift to follow the surfaces in the scene. In our experiments,
the look is of a wet, viscous canvas where brush strokes warp
to match the video. The appearance is in large part due to the
quality of the computed flow field — the flow algorithm does
not detect discontinuities in the flow, producing a smooth
flow field.

This painting style is somewhat similar to experimental
animation with wet paint on glass (e.g. the work of Caroline
Leaf), pinscreen, or sand animation. However, these tech-
niques are limited by the media in their use of color, and are
usually monochromatic.

Using a flow field other than the computed optical flow
produces interesting effects. For example, processing video
or even a still image with a nonzero constant flow field gives
a sense of motion in a still world (Figure 5). Painting with
user-defined flow fields is an intriguing avenue for artistic
exploration. Note that the paint-over algorithm without opti-
cal flow is a special case of the optical flow algorithm, with
F (x; y; t) � (0; 0).

4 Experiments

4.1 Music Video

We applied our techniques to footage of a jazz recording ses-
sion. We broke the input footage into large segments, and
processed each piece separately. Painting styles were cho-
sen for visual appeal and to enhance the changing mood and
intensity of the music. Although no specific formula was
used, we found ourselves using some general design pat-
terns: larger brush strokes (more abstract) were used dur-
ing intense passages and meditative passages; smaller (less
abstract) strokes were used in transitional passages; expres-
sionistic styles (more active and abstract) were used mostly

during the most intense passages and during solos. We pro-
cessed almost all of the video at 15 frames per second, and
did not use optical flow. The camera was moving at all times,
so difference masking had relatively little effect. Cross-fades
in the source video produced the effect of one moving shot
being painted over another moving shot. When combined
with a dramatic camera motion, a cross fade often appeard
no longer as a fade, but as a smooth motion from one view
to another. Excerpts are shown in Figure 4 and the accompa-
nying video.

4.2 A “Living” Painting

We wanted to demonstrate our methods in an experience that
would be immediately accessible to an outside visitor. We
fed the output from a video camera into a PC, painted it, and
projected it onto a large stretched canvas (Figure 1). The re-
sult appears on the canvas as a continually-updated painting
that visitors can interact with and be a part of. The system
runs on a 350 MHz Pentium II, with a Matrox video card and
an Intergraph graphics board.

The system achieves a frame rate of 1-4 frames per second
depending on the amount of motion in the scene; our system
is not currently fast enough to include optical flow in the
loop. However, at this frame rate, flickering cannot occur.
We do not double buffer, allowing the visitor to watch the
strokes appear on the canvas as they are created. Difference
masking ensures that the painting only changes where there
is motion in the scene. This is especially important for the
more abstract painting styles in which the entire image would
otherwise refresh each frame. Sample images are shown in
Figure 6.

Our system was demonstrated at a recent exhibition. We
found that users tended to spend a long time in front of
the canvas creating various painterly renderings of their own
faces and bodies. People also enjoyed watching other peo-
ple create paintings. All participants seemed to immediately
understand and accept the process.

5 Discussion and Future Work

We have presented new styles for painterly animation. The
paint-over and difference masking methods give the subjec-
tive impression of a painting that is continually being painted
over by a human hand. The use of estimated optical flow dis-
torts the brush strokes to follow the scene motion. Procedu-
ral and hand-designed optical flow fields can be used to add
motion and life to video.

These methods are designed to be simple and fast. High-
end animation will require more sophisticated methods, as
well as better artistic control over the animation.

410

To appear, First International Symposium on Non-Photorealistic Animation and Rendering, June 5-7, 2000

Figure 2: Consecutive frames of a video using paint-over and difference masking

Figure 3: Consecutive frames from a painting using optical flow, paint-over and difference masking.

Acknowledgments

We are grateful for the contributions of the following in-
dividuals: Clilly Castiglia and Jay Konopka for video and
systems support, Eero Simoncelli for optical flow code, and
Erik Friedlander and Mike Landy of SIAM Records for mu-
sic video footage. The first author is supported by NSF grant
DGE-9454173.

References
[1] Franklin C. Crow. Summed-area Tables for Texture Map-

ping. Computer Graphics (Proceedings of SIGGRAPH 84),
18(3):207–212, July 1984.

[2] Cassidy Curtis. Loose and Sketchy Animation. InSIG-
GRAPH 98: Conference Abstracts and Applications, page
317, 1998.

[3] Cassidy Curtis, Amy Gooch, Bruce Gooch, Stuart Green,
Aaron Hertzmann, Peter Litwinowicz, David Salesin, and Si-
mon Schofield.Non-Photorealistic Rendering. SIGGRAPH
99 Course Notes, 1999.

[4] Eric Daniels. Deep Canvas in Disney’s Tarzan. InSIGGRAPH
99: Conference Abstracts and Applications, page 200, 1999.

[5] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley,
and Richard Riesenfeld. Interactive Technical Illustration.
In Proc. 1999 ACM Symposium on Interactive 3D Graphics,
April 1999.

[6] Paul E. Haeberli. Paint By Numbers: Abstract Image Rep-
resentations. In Forest Baskett, editor,Computer Graphics
(SIGGRAPH ’90 Proceedings), volume 24, pages 207–214,
August 1990.

[7] Aaron Hertzmann. Painterly Rendering with Curved Brush
Strokes of Multiple Sizes. InSIGGRAPH 98 Conference Pro-
ceedings, pages 453–460, July 1998.

[8] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.
Teddy: A Sketching Interface for 3D Freeform Design.Pro-
ceedings of SIGGRAPH 99, pages 409–416, August 1999.

[9] Michael A. Kowalski, Lee Markosian, J. D. Northrup,
Lubomir Bourdev, Ronen Barzel, Loring S. Holden, and John
Hughes. Art-Based Rendering of Fur, Grass, and Trees.Pro-
ceedings of SIGGRAPH 99, pages 433–438, August 1999.

[10] Peter Litwinowicz. Impressions of San Francisco. InElec-
tronic Theater Program, number 120 in SIGGRAPH Video
Review, 1997.

[11] Peter Litwinowicz. Processing Images and Video for an Im-
pressionist Effect. InSIGGRAPH 97 Conference Proceed-
ings, pages 407–414, August 1997.

[12] Peter Litwinowicz. Image-Based Rendering and Non-
Photorealistic Rendering. In Stuart Green, editor,Non-
Photorealistic Rendering, SIGGRAPH Course Notes. 1999.

[13] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin,
Lubomir D. Bourdev, Daniel Goldstein, and John F. Hughes.
Real-Time Nonphotorealistic Rendering. InSIGGRAPH 97
Conference Proceedings, pages 415–420, August 1997.

[14] Barbara J. Meier. Painterly Rendering for Animation. InSIG-
GRAPH 96 Conference Proceedings, pages 477–484, August
1996.

[15] Ramesh Raskar and Michael Cohen. Image Precision Silhou-
ette Edges.1999 ACM Symposium on Interactive 3D Graph-
ics, pages 135–140, April 1999.

[16] Eero P Simoncelli, Edward H Adelson, and David J Heeger.
Probability Distributions of Optical Flow. InProc. IEEE Con-
ference of Computer Vision and Pattern Recognition, June
1991.

[17] Synthetik Software. Studio Artist 1.1. Software package.

[18] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes.
SKETCH: An Interface for Sketching 3D Scenes. InSIG-
GRAPH 96 Conference Proceedings, pages 163–170, August
1996.

511

To appear, First International Symposium on Non-Photorealistic Animation and Rendering, June 5-7, 2000

Figure 4: Frames from a music video, illustrating various painting styles and resulting effects.

Figure 5: Consecutive frames of a video using a constant optical flow field (F (x; y; t) � (20 pixels; 20 pixels)). The video
shows the top of a building on a foggy night, with camera motion. The flow field causes brush strokes in empty areas to rise
toward the upper right corner of the image.

Figure 6: Paint layers from the live painting shown in Figure 1.

612

