
Painterly Rendering for Animation

Barbara J. Meier
Walt Disney Feature Animation
Abstract

We present a technique for rendering animations in a painterly style.
The difficulty in using existing still frame methods for animation is
getting the paint to “stick” to surfaces rather than randomly change
with each frame, while still retaining a hand-crafted look. We
extend the still frame method to animation by solving two major
specific problems of previous techniques. First our method elimi-
nates the “shower door” effect in which an animation appears as if
it were being viewed through textured glass because brush strokes
stick to the viewplane not to the animating surfaces. Second, our
technique provides for frame-to-frame coherence in animations so
that the resulting frames do not randomly change every frame. To
maintain coherence, we model surfaces as 3d particle sets which
are rendered as 2d paint brush strokes in screen space much like an
artist lays down brush strokes on a canvas. We use geometric and
lighting properties of the surfaces to control the appearanceof brush
strokes. This powerful combination of using 3d particles, surface
lighting information, and rendering 2d brush strokes in screen space
gives us the painterly style we desire and forces the brush strokes
to stick to animating surfaces. By varying lighting and choosing
brush stroke parameters we can create many varied painterly styles.
We illustrate the method with images and animated sequences and
present specific technical and creative suggestions for achieving
different looks.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation; I.3.5 [Computer Graphics]:
Three-Dimensional Graphics and Realism – Color, Shading, Shad-
owing, and Texture.

Key Words: painterly rendering, non-photorealistic rendering,
particle systems, painting, abstract images.

Author’s current affiliation: Hammerhead Productions.
email: bjm@gg.caltech.edu or barb@hammerhead.com
1 Introduction

A painting reduces a subject to its essence. The process of paint-
ing is an artist’s interpretation of the world, real or imagined, to a
two-dimensional canvas. By not depicting every detail, the painter
allows the viewer to complete the picture, to share in the interpre-
tative process. Of course the process begins with the painter who,
by abstracting a scene, can direct the viewer’s eye to the area of
interest by simplifying unimportant details. A painter can exag-
gerate the effect of light to create a wide tonal range that creates
richness and drama at the center of interest. By using the largest
brush stroke possible to represent small forms and textures, the
painter creates a shorthand for conveying details. The character
of brush strokes define the character of a surface and how light is
reflected from it; surfaces that are well-blended imply smoothness
or softness while direct, unblended strokes imply stronger lighting
or more pronounced surface texture. Painters use varying edge
definition, edges that are distinct in one place and lose themselves
in another, to add rhythm to a composition. Letting brush strokes
cross edge boundaries can also help unify an entire composition.
By varying brush stroke texture, size, and direction, the artist can
not only define forms, but also provide rhythm and energy that
help direct the viewer’s eye. Larger, smoother brush strokes tend
to recede in depth while small, textured strokes depict foreground
detail. A painter can even use brush strokes to represent light and
atmosphere. Whatever the painting style, a certain amount of ab-
straction, or economy of description, strengthens the composition
and provides focus [5, 6, 13].

Computer rendering provides an easy, automated way to render
everything in a scene with fine detail. This creates static images
that do not invite the viewer into the process. In particular, when
creating images for animation, focus and simplification are essen-
tial to showing action in a clear way since the temporal nature of
the image gives the viewer much less time to let their eyes wan-
der about the scene [16]. Certainly focus and simplicity can be
achieved with computer rendering tools by carefully controlling
lighting and surface attributes and unnecessary detail can be ob-
scured using hierarchical modeling, but it is still difficult to obtain
the level of abstraction that is evident in a good painting. Even
the brush strokes of a painting contribute to the abstraction of its
subject and add another dimension to which a viewer can respond.
One could not imagine looking at a Van Gogh painting without ex-
periencing the energy of his brush strokes. Hand-drawn and hand-
painted animations have an energetic quality that is lacking in most
computer-rendered animation. Often when computer methods try
to mimic the wavering quality of hand-drawn animation, too much
randomness creeps in and makes the animation noisy. A human
artist drawing each frame is better able to control frame-to-frame
coherence, while maintaining a hand-crafted look.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.




Figure 1: Frames from a painterly rendered animation. The painterly renderer is particularly well-suited for abstracting natural textures
like the cloudy sky, hay, and plowed ground in this example. Note that the haystack texture does not exhibit the problems of traditional
texture-mapping in which the gift-wrapped texture gets dense near silhouette edges. The overlapping brush strokes on the plowed ground
imply volume rather than flat, painted texture as the view animates, even though the surface is planar. We use the largest brush strokes to paint
the sky, using brush texture and random hue variation to create clouds that do not exist in the color reference picture. The original haystack
geometry is simply a cone resting on a cylinder. We represent the hay with a brush stroke shorthand that eliminates the need to model and
color every piece of hay.
We want to take advantage of the benefits of a painterly look on
computer-rendered animating geometry. Aesthetically, a still frame
should have the characteristics of an oil or pastel painting: details
should be abstracted by shorthand brush strokes, the roundness of
forms should be defined by brush stroke directions, color should
break the boundaries of surfaces to create rhythm in the composi-
tion, brush stroke size and texture should be varied according to the
kind of surface being depicted, and the effects of light should be
exaggerated to help provide focus, all as if an artist had painted on
a physical canvas. Technically, the rendered images should main-
tain coherence in animated sequences and should not change in a
random way every frame. Images should not have the gift-wrapped
look of painted textures that are mapped onto the geometry using
traditional methods. Our goal is not to eliminate the need for ob-
servational understanding and artistic vision, but rather to provide a
tool that automates the drawing of brush strokes, but leaves the artis-
tic decisions about lighting, color, and brush stroke characteristics
to the user.

The focus of most rendering research in the last two decades has
been on the creation of photorealistic imagery. These methods are
quite sophisticated, but tend to create imagery that is mechanical-
looking because detail is represented very accurately. Recently
there has been a movement toward more creative and expressive
imagery in computer graphics but few techniques that provide ways
to achieve different looks, especially for animation. Some computer
painting tools can mimic successfully the hand-drawn line quality,
painterly look, and energy of traditional media, but these tools
typically work only for still frames. These tools and related work
are discussed in section 2.

Our solution, presented in section 3, is to generate a set of
particles that describe a surface, depth-sort the particles in camera
space, and render them as 2d brush strokes in screen space using a
painter’s algorithm [7]. The look of the 2d brush strokes, including
color, size, and orientation, is derived from the geometry, surface
attributes, and lighting characteristics of the surface. These at-
tributes are designed by the user and either associated directly with
the particles or encoded in rendered images of the geometry, called
reference pictures. We illustrate our work with images and anima-
tions that have been successfully rendered to achieve a painterly
look using this algorithm (Figures 1, 5, and 7), and in section 4
we discuss the images. Finally, in section 5, we present aesthetic
techniques and technical considerations for creating various image
styles.

2 Related Work

Our work combines core ideas from two areas of previous work:
1) painterly rendering of still images from reference pictures and
2) particle rendering. From the first research area, our work was
most directly inspired by [4]. Haeberli described a system for cre-
ating painterly images from a collection of brush strokes that obtain



create particles to represent geometry
for each frame of animation

create reference pictures using geometry, surface
attributes, and lighting

transform particles based on animation parameters
sort particles by distance from viewpoint
for each particle, starting with furthest from viewpoint

transform particle to screen space
determine brush stroke attributes from

reference pictures or particles and randomly
perturb them based on user-selected parameters

composite brush stroke into paint buffer
end (for each particle)

end (for each frame)

Figure 2: Painterly rendering algorithm.

their attributes, such as position, color, size, and orientation, from
synthetically rendered or photographic reference pictures. Several
commercial systems, such as [3] and [8], have incorporated the idea
of reference pictures, and Saito and Takahashiuse a similar concept,
the G-buffer, to create simplified illustration-type images [11]. Our
system also uses reference pictures to obtain brush stroke attributes.

In Haeberli’s system brush stroke positions are randomly dis-
tributed, so successive frames of an animation would change ran-
domly. Alternatively, the positions and sizes of brush strokes could
remain constant over the animation, but this creates the “shower
door” effect, becausebrush strokes are effectively stuck to the view-
plane not to the animating surfaces. The University of Washington
illustration systems [12, 17] provide methods for rendering images
in a pen-and-ink style, but again, the randomness that is employed
to achieve the hand-drawn look would cause successive frames to
change randomly.

We solve the temporal randomness problem by using particle
rendering methods. If we treat brush strokes as particles that are
stuck to surfaces, we eliminate both the “shower door” effect and
random temporal noisiness. Reeves first presented an algorithm for
rendering particles without using traditional 3D models to repre-
sent them, instead drawing them as circles and motion-blurred line
segments in screen space [10]. We also render particles in screen
space, but use 2d brush stroke shapes instead of circles and line
segments.

Rendering 2d shapes in screen space is one of the core concepts
of our work. Fleischer et al. [2] described a similar method, except
they place 3d geometric elements on surfaces in model space, which
are then rendered traditionally as geometric textures such as scales,
feathers, and thorns. The appearance of their 3d shapes compared
to our 2d brush strokes is quite different.

Finally, Strassmann presented a technique for modeling brush
strokes as splines for Sumi-E style painting, a Japanese brush-and-
ink technique [14]. This system is designed primarily for still
images, but does provide a simple method for animation. The user
specifies key frames for each brush stroke that are interpolated over
time. Our approach is different in that we provide a rendering
technique rather than an interactive system and we are emulating a
more impressionistic style of painting with short paint dabs rather
than long graceful strokes.

3 Painterly Rendering

In this section, we describe our painterly rendering algorithm as
shown in Figure 2.
We begin by creating a particle set that represents geometry
such as a surface. The particles are transformed to screen space
and sorted in order of their distance from the viewpoint. We use a
painter’s algorithm to render particles as 2d brush strokes starting
with the particles furthest from the viewpoint, and continuing until
all particles are exhausted. Each brush stroke renders one particle.
The look of the rendered brush strokes, including color, shape, size,
texture, and orientation, is specified by a set of reference pictures
or by data that is stored with the particles. Reference pictures are
rendered pictures of the underlying geometry that use lighting and
surface attributes to achieve different looks. The attributes for a
particle are looked up in the reference pictures in the same screen
space location at which a particle will be rendered finally. Figure 3
illustrates the painterly rendering pipeline.

In the following sections, we begin by discussing particle place-
ment. Next we explain brush stroke attributes, how they are applied,
and how the reference pictures that encode the attributes are created.
Finally, we present various ways of manipulating the brush stroke
attributes to produce painterly images.

3.1 Generating Particles

There are many methods of populating a surface with particles,
such as those described in [15] and [18]. We employ a simple
method that starts with a parametric surface and a desired number
of particles. We tessellate the surface into triangles that approximate
the surface. Then, for each triangle, we compute its surface area
and randomly distribute particles within it. The number of particles
for a triangle is determined by the ratio of its surface area to the
surface area of the entire surface. The particle placer may store
additional information with the particles such as color, size, and
orientation. After the initial particle placement, these additional
attributes or the particles’ positions may be modified by performing
various functions on them. Alternatively, the entire particle set can
be generated from a particle system simulation [9].

3.2 Specifying and Applying Brush Attributes

In order to render a brush stroke, we need the following attributes:
image, color, orientation, size, and position.

The brush image is a color image with alpha. The image may be
solid or it may contain texture as shown in Figure 4. A single image
may be used as is or it may be used to cut a shape from a random
position in a sheet of texture, providing each brush stroke with
unique texture. Although the brush can be a full color image, we
typically use monochrome images that are the same in all channels
so that the brush itself does not impart color, just texture.

Orientation, color, and size are either stored with the individ-
ual particles or obtained from reference pictures. If these attributes
are associated with the particles, then they are used directly by the
renderer; otherwise, the attributes are sampled from reference pic-
tures which encode information about surface geometry and lighting
characteristics by screen space location. Reference pictures can be
generated in several ways, but typically are rendered images of the
particle set or surface. After a particle’s position is transformed to
screen space, we use the 2d transformed position to look up color,
orientation, and size information in the same 2d location in the ap-
propriate reference pictures. Example reference pictures for these
attributes are shown in Figure 3.

The reference picture used for color information is typically
a smooth-shaded rendered image of the surface with appropriate
color attributes and lighting. Texture maps are generally not nec-
essary except to describe broad color changes across the surface.
The painterly rendering will provide texture and high frequency
variations in color.



Shaders

Geometry

Particles in
World Space

Camera
Transform

Particle
Placer

Painterly
Renderer

Brush Image

Reference Pictures

Output Image

Color

Orientation

Size

Figure 3: An example of the painterly rendering pipeline. The particle placer populates a surface with particles. The surface geometry
is rendered using various shaders to create brush stroke attribute reference pictures. Note that the arrows in the orientation image are
representational in this diagram; the orientations are actually encoded in the color channels of the image. The particles, which are transformed
into screen space, the reference pictures, and the brush image are input to the painterly renderer. The renderer looks up brush stroke attributes
in the reference pictures at the screen space location given by each particle’s position and renders brush strokes that are composited into the
final rendered image.
The reference picture that encodes orientation information is
an image made with a specialized shader that encodes surface nor-
mals in the resulting image. This surface normal shader projects
the 3d surface normals into two dimensions along the view vector
or another specified vector. Alternatively, we may constrain orien-
tations to line up with the direction of a surface parameter or texture
coordinate.

Finally, the brush size reference picture is a scalar image that
encodes x and y scaling information. We linearly map the range
of values in the image to the range of user-specified sizes so that
the areas with small values are painted with the smallest brushes
and the areas with high values are painted with the largest brushes.
Again, we can use lighting, texture maps, or specialized shaders to
achieve the desired look.

Brush stroke position comes from the particle’s position in
screen space. Position may be modified by a function such as
moving it in the direction of a velocity vector or adding noise.

To apply the attributes, the brush image is either used directly or
cut from a sheet of texture, multiplied by the color and alpha, scaled
by the size, and rotated to the orientation, each as specified in the
corresponding reference picture or by data stored with the particle.
Figure 4: Some brush images used to create the paintings in
this paper.

Once attributes are applied, brush strokes are composited into the
final rendered image at the position specified by the particle.

3.3 Animating Parameters and Randomness

It is possible to animate brush stroke attributes by animating charac-
teristics of the reference pictures, but it is necessaryfor the reference



Figure 5: Four styles of painterly rendered fruit. By choosing different brush images and painting parameters, we have created four
different looks from the same set of reference pictures. The upper left image has the soft, blended quality of a pastel painting. The pointillistic
version, in the upper right, remaps the original saturations and values from the color reference picture to a new range. A squiggle brush
image and increased hue variation were used to create marker-style strokes in the lower left image. The brush used to create the lower right
contained some opaque black that helps to create a woodcut print style.
pictures to change smoothly over time so that the final rendered im-
ages are not temporally noisy.

Using randomness is important in achieving a hand-crafted look;
therefore, we can randomly perturb the brush stroke attributes based
on user-selected parameters. Figure 6 illustrates the lack of richness
and texture that results when randomness is not used.

To maintain coherence, a seed is stored with each particle so
that the same random perturbations will be used for a particular
particle throughout an animation. The user specifies the amount
of randomness by choosing a range about the given attribute. For
example, we may specify that brush rotations be determined by an
orientation reference picture, but to eliminate the mechanical look
of the brushes lining up perfectly, we specify that we are willing to
have brush orientations fall within the range of -10 to +20 degrees
from the orientation given in the reference picture. The resulting
slightly random orientations give the strokes a more hand-crafted
look.

4 Results

Figures 1, 5, and 7 are images rendered using our algorithm that
show a variety of different painterly looks. In Figure 1, we show
frames from a Monet-style haystack animation. The still frames
look like oil paintings and the brush strokes animate smoothly
throughout the animation. The painterly renderer is particularly
well-suited to the impressionist style because it composes a paint-
ing with many small brush strokes. In this example, we are not
Figure 6: Applying randomness to brush stroke attributes. This
image was rendered without color, orientation, or scale variation.
Compare it to the images in Figure 1 which were painted with all
of those attributes jittered. Note how the painterly texture of the
sky and mountains is dependent on random color variations. In
the haystacks, orientation and scale changes make them look less
mechanical in the jittered version.

concerned with defining exact boundaries and instead let the over-
lapping brush strokes create a rhythm that unifies the composition.
Large brush strokes tend to extend beyond the silhouette edge, cre-



Figure 7: Beach ball animation frames. In this example the beach ball is bouncing, squashing, and stretching from frame to frame. Our
technique works as well for animating objects as for the haystack example where only the camera position is animating.
ating a semi-transparent look that is most apparent when surfaces
are animated. We believe this adds to the painterly look. Using
smaller, denser, or more opaque strokes near the edges would create
a more opaque, solid look. We have used the painterly technique
of abstraction to depict many of the surfaces in this animation. For
example, in the sky we used the brush texture and color variation to
abstractly depict sweeping clouds. The hay is captured with a brush
stroke texture that shows an appropriate amount of detail. Finally
because our technique uses overlapping 2d brush strokes, we have
avoided the gift-wrapped look of a smooth-edged, texture-mapped
surface.

In Figure 5, we show a plate of fruit rendered in four styles.
The reference pictures used to create the images were the same for
all four, with the exception of the orientation image for the lower
right image. The different looks were achieved by varying the brush
image, the amount of jittering, and the brush size. Of course even
more looks could be created by changing the reference pictures, but
one of the strengths of the painterly renderer is the richness of the
user-selectable parameter set. For example the upper right image
was brightened and desaturated by mapping colors in the color
reference picture to new saturation and value ranges. Conversely,
the colors in the lower right image are richer because the brush
image contained some opaque black. In this painting, the brush
strokes become the dominant subject of the painting.

Finally, in Figure 7, we show three frames from an animated
bouncing ball sequence. Our technique works equally well for
an animating, deforming object like the squashing and stretching
ball in this example, as for an animated camera as shown in the
haystacks example. Large brush strokes give the ball an imprecise
boundary which gives the ball animation a hand-drawn look quite
different from the mechanical look that a traditionally-rendered
version would have.

5 Discussion and Techniques

As with any image creation process, it takes some experimenta-
tion to get the desired image. In this section, we describe some
of the techniques that we’ve discovered. We begin with our strate-
gies for achieving creative images and then present some technical
discussion on how we achieve them.

5.1 Creative Techniques

We have discovered many techniques for rendering aesthetically
pleasing images. Chief among these is separately rendering subsets
of the particle set and compositing these layers into a finished image.
We find that our most successfulimages are created using traditional
painting methods such as creating a rough value underpainting with
large brush strokes, adding layers of color to define the form, and
then adding small brush strokes where we want more detail. Our
implementation provides a skip operation that allows us to render
every nth particle. We typically render the surface in two or three
layers using image processing techniques to shrink the silhouette
edge toward the center of the object. The outside layers are painted
sparsely, while the inside layers are painted thickly. We also use
image processing techniques to isolate highlight and shadow areas
to be rendered separately. Building up layers of semi-transparent
textured brush strokes, perhaps even rendering the same particle
multiple times with different brush stroke characteristics, is impor-
tant in achieving the painterly look. In the haystacks example, the
haystacks consist of four layers: a rough dark blue underpainting,
an overall orange layer, a yellow detail layer, and a sparse white
highlight layer. These layers and how they contribute to the final
image are shown in Figure 8.

We also usually render the objects in a scene as separate layers.
In the haystack example, we painted the sky, mountains, field,
each haystack, and each haystack shadow as a separate layer. This
allowed us to use very large brush strokes on the sky and not worry
about them creeping too far into the mountains. By rendering these
layers separately, we were better able to use the painting parameters
most appropriate for each layer. The fruit images in Figure 5 were
rendered in three layers: the wall, the table, and the plate of fruit.
In this case, because the brush stroke characteristics of each fruit
were similar, we wanted the brushes strokes to interact as much as
possible to enhance the painterly look.

We typically use only one light source to maintain focus in the
composition. We use exaggerated hue as well as value variations to
distinguish light and shadow areas. For example, the sunset light on
the haystacks is emphasized through exaggerated use of orange and
blue. Shadows may be rendered by compositing a shadow element
onto the color reference picture and rendering the surface and the
shadow at the same time, or shadows may be painted as a separate
layer and composited, giving the user more creative control.

We use many traditional painting techniques such as using back-
ground color in shadow areas to help them recede and juxtaposing
complementary colors, such as the orange and blue of the haystacks,
to create a shimmering light effect. We repeat brush stroke color,
size, and texture in different areas of the scene, as shown in the fruit
example, to marry the various elements into a unified composition.
Users of the painterly renderer are encouraged to examine the nu-
merous existing texts on traditional painting techniques for more
possibilities.

5.2 Technical Considerations

If reference pictures are used, it is often helpful to “grow” the
reference image outward using image processing techniques, so
that when we look up particular screen locations we don’t fall off
the edge of the surface onto anti-aliased or unrendered parts of the
image. This is applicable only if we are rendering layers separately
and then compositing them afterwards. To ensure that individual



Figure 8: Compositing a haystack from several layers. Each
layer of the haystack is shown by itself on the left while its con-
tribution to the composited image is shown on the right. We used
image processing techniqueson the color reference picture to isolate
the shadow and highlight areas to be painted separately. Following
traditional painting techniques, we created a dark blue underpaint-
ing of the shadow areas as shown in the top row. The next layer
provides most of the color and texture of the haystack, but allows
some of the blue underpainting to show through. The bottom two
rows show two separate detailed highlight layers and a final shadow
layer that helps integrate the haystack with the field. For each layer,
we changed the brush size and the amount of color variation.

brush strokes do not jitter in size and orientation slightly with every
frame, it is also useful to blur the orientation and size images slightly.
Perfect particle placement and sub-pixel sampling would eliminate
the need for these steps, but we have found that these techniques
work well in practice.

The simple surface normal shader that we described previously
provides surface normal information based on a particular orienta-
tion of the surface after it has been through a camera transformation.
But as a surface animates, so does its orientation with respect to the
camera. This gives a particular look, but we prefer to have brush
strokes oriented with respect to the surface and not change as the
surface animates. To achieve this, we have specified our desired
orientations with respect to the (u, v) surface parameters in texture
maps. A special shader looks up values in the maps and then ap-
plies the camera transformation to them to obtain the screen space
orientation that is output to the reference picture.

Brush stroke attributes may be stored with the particles or en-
coded in reference pictures. An advantage to storing attributes with
the particles is that we avoid aliasing errors looking up values in
reference pictures. An advantage to using reference pictures is
that they are usually quickly rendered and thus easily changed and
can encode more complex lighting information. Storing attributes
with particles is better for those that are unlikely to change because
rerunning the particle placement or simulation may be costly. In
practice, a mixture of the two methods works well.

At first glance, one might suggest we not render back-facing
particles, but this is very important in animation since particles will
pop on and off as they become visible and invisible if we cull the
back-facing ones. If we always render them, however, they will
be revealed gradually as they become visible. Front-Facing brush
strokes must be dense enough to obscure back-facing particles,
unless a translucent effect is desired. In practice, we find that we
do not always want to render a completely opaque object if we are
building up textured layers of paint, but we also do not want to
see through to the back-facing brush strokes if they are animating.
In this case, we do cull back-facing particles, letting them fade in
as they get close to front-facing to eliminate the popping effect
as particles come into view. This was necessary in the haystack
example so that as the view animates, we do not see the back side
of each sparse layer through the front.

One should also note that because particles are sorted by distance
from the viewpoint at each frame, there will be some popping of
brush strokes in front or behind one another as particles animate,
but with some attention to brush stroke size and translucency, this
effect is not visually problematic and can add to the painterly effect.

6 Future Directions

Although our use of the renderer thus far has been to create im-
ages that are entirely painted, we can imagine incorporating this
look with traditional rendering methods. For example, when artists
depict foliage, they don’t paint every leaf. Instead, they use brush
strokes to abstractly represent the leaves. Certainly particle render-
ing methods have been used for this purpose before [10], but we
believe our technique can eliminate complex modeling issues such
as generating realistic tree models made of particles, and that the
level of control we provide for achieving different looks will prove
to be a more powerful but easier-to-use tool. We foresee using this
method to render surfaces that are difficult to model and render
using traditional geometry and texture maps. This class of objects,
which includes many of those found in nature, must be abstracted
when rendered because of their high complexity.

Our renderer does not handle changing object sizes in an auto-
mated way. We can address this issue with staging or by animating
the brush size reference picture; however, it would be helpful if
the renderer could automate brush stroke size based on the screen
surface covered, and then change the size smoothly as the object
changes size using multi-resolution techniques such as those used
by [1].

We would like to use a better particle placement method that
covers both the geometric surface and screen space more evenly.
While we can address this situation with the layer rendering tech-
nique described above, this is not always satisfactory and also re-
quires active intervention by the user. Metric tensor techniques [18]
could be used to specify particle density for surfaces that do not rad-
ically change their orientation with respect to the viewpoint within



an animation, but other multi-resolution methods might be required
for those surfaces that do change orientation.

Finally, although we are unlimited in brush stroke shape, we
find a rectangular or oval shape works best to show changes in
orientation, but these shapes stick out along the edges of curved
surfaces. We would like to implement longer, deformable brushes
than can follow curves on a surface.

7 Conclusions

We have presented a new technique for rendering animations in a
painterly style. Our work has brought together two previous ren-
dering methods: using reference pictures to define 2d brush stroke
attributes and using particles to define the locations where brush
strokes will be rendered. Our algorithm solves the two major prob-
lems of rendering animations with previous painterly techniques.
First, images created by our renderer are coherent over time and
do not exhibit random frame-by-frame changes. Second, brush
strokes stick to animating surfaces, not to the viewplane, thus elim-
inating the “shower door” effect. We have illustrated our algorithm
with images that have painterly qualities such as exaggerated use
of light, broken silhouette edges that create rhythm, brush stroke
textures and sizes that describe surface qualities, and abstracting
the subject to strengthen and unify the composition.

8 Acknowledgments

Many thanks to Ken Hahn, Scott Johnston, Jason Herschaft, and
Craig Thayer for turning the painterly renderer prototype into a pro-
duction program, contributing many new ideas and features along
the way. Ken Hahn also wrote the particle placer and went beyond
the call of duty to make many last minute bug fixes. Thanks to Dave
Mullins and Andrea Losch for modeling and rendering support,
Craig Thayer and Scott Johnston for valuable comments on early
drafts of the paper, and Nancy Smith for video production support.
We are grateful to Al Barr and Scott Fraser of Caltech and to Ham-
merhead Productions for providing production facilities. Finally,
many thanks to David Laidlaw for technical discussions about the
painterly renderer, extensive paper reviews, diagrams, many hours
of paper production support, and help coping with my pregnancy
madness.

References

[1] Deborah F. Berman, Jason T. Bartell, and David H. Salesin.
Multiresolution painting and compositing. In Proceedings of
SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Com-
puter Graphics Proceedings, Annual Conference Series, pages
85–90. ACM SIGGRAPH, ACM Press, July 1994.

[2] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin, and
Alan H. Barr. Cellular texture generation. In SIGGRAPH 95
Conference Proceedings, Annual Conference Series, pages
239–248. ACM SIGGRAPH, Addison Wesley, August 1995.

[3] Fractal Design Corporation. Fractal Design Sketcher. Aptos,
California, 1993.

[4] Paul E. Haeberli. Paint by numbers: Abstract image represen-
tations. In Computer Graphics (SIGGRAPH ’90 Proceedings),
volume 24, pages 207–214, August 1990.

[5] Carole Katchen. Creative Painting with Pastel. North Light
Books, 1990.

[6] Gregg Kreutz. Problem Solving for Oil Painters. Watson-
Guptill Publications, 1986.
[7] Martin E. Newell, R. G. Newell, and T. L. Sancha. A solution
to the hidden surface problem. In Proc. ACM Nat. Mtg. 1972.

[8] Parallax Software Limited. Matador Paint System. London,
1995.

[9] W. T. Reeves. Particle systems – a technique for modeling a
class of fuzzy objects. ACM Trans. Graphics, 2:91–108, April
1983.

[10] William T. Reeves and Ricki Blau. Approximate and proba-
bilistic algorithms for shading and rendering structured par-
ticle systems. In Computer Graphics (SIGGRAPH ’85 Pro-
ceedings), volume 19, pages 313–322, July 1985.

[11] Takafumi Saito and Tokiichiro Takahashi. Comprehensible
rendering of 3-D shapes. In Computer Graphics (SIGGRAPH
’90 Proceedings), volume 24, pages 197–206, August 1990.

[12] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and
David H. Salesin. Interactive pen–and–inkillustration. In Pro-
ceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, Annual Conference
Series, pages 101–108. ACM SIGGRAPH, ACM Press, July
1994.

[13] S. Allyn Schaeffer. The Big Book of Painting Nature in Oil.
Watson-Guptill Publications, 1991.

[14] Steve Strassmann. Hairy brushes. In Computer Graphics
(SIGGRAPH ’86 Proceedings), volume 20, pages 225–232,
August 1986.

[15] Richard Szeliski and David Tonnesen. Surface modeling with
oriented particle systems. In Computer Graphics (SIGGRAPH
’92 Proceedings), volume 26, pages 185–194, July 1992.

[16] Frank Thomas and Ollie Johnston. Disney Animation–The
Illusion of Life. Abbeville Press, 1981.

[17] Georges Winkenbach and David H. Salesin. Computer–
generated pen–and–ink illustration. In Proceedings of SIG-
GRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer
Graphics Proceedings, Annual Conference Series, pages 91–
100. ACM SIGGRAPH, ACM Press, July 1994.

[18] Andrew P. Witkin and Paul S. Heckbert. Using particles to
sample and control implicit surfaces. In Proceedings of SIG-
GRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer
Graphics Proceedings, Annual Conference Series, pages 269–
278. ACM SIGGRAPH, ACM Press, July 1994.


