
Multiscale Moment-Based Painterly Rendering

Diego Nehab1 Luiz Velho2

1PUC-Rio – Pontifı́cia Universidade Católica, Rio de Janeiro
2IMPA – Instituto de Matemática Pura e Aplicada

diego@tecgraf.puc-rio.br lvelho@impa.br

Abstract

In this paper we present a new method for painterly rendering of
images. Our method extends the image-moment stroke placement
algorithm in two ways: we employ a multiscale scheme for com-
puting strokes and we provide a parametrized mechanism for con-
trolling stroke distribution. In addition, we introduce a flexible im-
plementation framework based on the extension language Lua.

Keywords: Non-photoralistic rendering, Painting, Dithering, Lua

1 Introduction

The evolution of computer graphics led naturally to the develop-
ment of different types of visualization techniques. Initially, the
focus was on photorealistic rendering, where the goal is to gen-
erate synthetic images that are indistinguishable from real pho-
tographs [17]. More recently, there has been a growing interest in
non-photorealistic rendering techniques that emphasize the expres-
sive depiction of visual information [3].

Non-photorealistic rendering is, by definition, a very broad area
of research that encompasses many rendering styles in various ap-
plication contexts. Two useful criteria for classification of non-
photorealistic rendering techniques are: the type of source data;
and the nature of the simulated process.

Techniques are classified according to source data into object-
space methods that use the 3D model of a scene to create the ren-
dered image [11, 14], and image-space methods that work directly
on the 2D image [4, 5]. Hybrid methods take advantage of both 3D
and 2D data to produce the final result [9].

Most non-photorealistic techniques are inspired in traditional vi-
sual art forms, such as painting (oil [5], watercolor [1, 18]), drawing
(pen-and-ink [7, 2, 22], pencil [19, 21], charcoal [23]), and printing
(etching, engraving [12, 13]). Here, both the physical process and
the medium provide a paradigm for computation and interaction.

In this paper we present a new method for painterly rendering of
images that improves upon previous work in the area.

1.1 Related Work

Painterly rendering simulates the appearance of painted images.
The basic primitive in this technique is a brush stroke. Images are
generated by applying a sequence of brush strokes to a 2D canvas.
A brush stroke has various attributes, such as position, shape and
color [20].

In object-space methods, brush strokes are first associated with
the 3D geometry of objects in a scene, and then projected to the im-
age plane defined by a virtual camera [11]. In image-space meth-
ods, brush strokes are placed on the output image, based on 2D
information derived from input images [4].

Interactive methods allow the user to guide the rendering pro-
cess in a manual or semi-automatic manner, by indicating where
strokes should placed [4]. Non-interactive methods render the im-
age automatically based on input parameters and data analysis [5].

Some methods process a sequence of images exploiting temporal
coherence [10, 6].

The technique described in this paper is a non-interactive, image-
space method. It is based on the image moment-based stroke
placement algorithm [15, 16]. The main original contributions in
our work are: a multiscale scheme for computing the strokes, a
parametrized mechanism for controlling stroke distribution, an im-
age abstraction specially optimized for the algorithm, and a flex-
ible implementation framework based on the extension language
Lua [8].

1.2 Overview

This paper is organized as follows. Section 2 reviews the moment-
based painterly rendering method. Section 3 describes the additions
proposed in the new method. Section 4 shows some results of using
the method. Section 5 concludes with final remarks and a discus-
sion of ongoing work.

2 Review of the image-moment based
painterly rendering

Given a source image and a stroke template image, the painterly
rendering algorithm outputs a painted version of the source image.
The method proceeds as an artist who progressively strokes a can-
vas trying to reproduce the source image on it.

In this paper, we use gray-scale images, but the method presented
extends naturally to color images.

----------------------------------------------------------------------
-- Painterly renders an image
-- Input
-- Source: source image
-- Stroke: stroke template image
-- S: neighborhood size
-- Output
-- painted version of source image
----------------------------------------------------------------------
function PainterlyRender(Source, Stroke, S)

local List = ComputeStrokeList(Source, S)
local w, h = GetWidth(Source), GetHeight(Source)
return PaintStrokeList(Stroke, List, Canvas(w, h))

end

Program 1: Painterly rendering algorithm.

The process can be divided into two phases: analysis and syn-
thesis. In the analysis phase, a list of strokes is calculated from the
source image. In the synthesis phase, the strokes are painted over a
blank canvas. Both phases can be seen in Program 1.

The algorithm outlined above, and detailed in the following sec-
tions, generates images similar to that shown in Figure 1, and is the
result of previous work [16]. We proceed with the description of the



(a) (b) (c)

Figure 1: Painterly rendering process

synthesis process, which will make clear to the reader the require-
ments to be fulfilled by analysis process, explained subsequently.

2.1 The synthesis phase

The algorithm works with strokes that are described by the follow-
ing set of attributes: color, location, orientation and size. According
to these parameters, painting a stroke on a canvas corresponds to the
process of scaling, rotating, and using the stroke template image as
a transparency map to be blended in the output image, in the correct
position and with the appropriate color.

----------------------------------------------------------------------
-- Paints a stroke on a canvas
-- Input
-- Stroke: stroke template image
-- params: stroke parameter set
-- Canvas: canvas to receive strokes
-- Output
-- painted version of source image
----------------------------------------------------------------------
function PaintStroke(Stroke, params, Canvas)

local Scaled = Scale(Stroke, params.w, params.h, New())
local Rotated = Rotate(Scaled, params.theta, New())
Blend(Rotated, params.xc, params.yc, params.color, Canvas)

end

----------------------------------------------------------------------
-- Paints a stroke list on a canvas
-- Input
-- Stroke: stroke template image
-- List: stroke parameter list
-- Canvas: canvas to receive stroke
-- Output
-- painted version of source image
----------------------------------------------------------------------
function PaintStrokeList(Stroke, List, Canvas)

for i = 1, Length(List) do
PaintStroke(Stroke, List[i], Canvas)

end
return Canvas

end

Program 2: The synthesis phase.

Program 2 shows the complete implementation of the synthesis
phase of the algorithm. The partial result for a stroke list can be
seen be seen in Figure 2.

Figure 2: Example of stroke painting, for different stroke templates.

When there are enough strokes and each of them has the appro-
priate attributes, a result such as that of Figure 2 can be achieved.
The computation of such a list of strokes is the task of the analysis
phase of the algorithm.

2.2 The analysis phase

The first step in the creation of a stroke list is the definition of the
stroke distribution. In a second step, each stroke in the distribution
has its parameters computed.

The definition of a stroke distribution is based on the obser-
vation that high-frequency details in the source image should be
represented by many small strokes, whereas low-frequency regions
should be represented by fewer large strokes.

The computation of the stroke parameters results from the analy-
sis, by the image moments theory, of the neighborhood in the source
image where the stroke is to be placed. Since the same tools provide
the information needed for the computation of the stroke distribu-
tion, their use is introduced first.

2



2.3 Computing stroke parameters

The goal of each stroke is to approximate a neighborhood of the
source image. From each neighborhood, the image-moment based
approach determines the corresponding stroke parameters in two
steps. The first step computes a color difference image between
the region and the color at the center of that region. The second
step determines the remaining stroke parameters based on the image
moments of the color difference image created in the first step.

2.3.1 The color difference image

The color difference image attempts to measure the distance be-
tween the color of the stroke and the color of each point in the
source image neighborhood being considered. Ideally, the resulting
image shows a picture of the shape that a stroke of that color should
have if was to approximate the region. In other words, the operation
isolates the segments of the region that can be better represented in
the stroke color. An algorithm that generates such result is shown
in Program 3.

----------------------------------------------------------------------
-- Computes the difference between Region and color
-- Input
-- Region: source image region
-- color: stroke parameter list
-- Diff: color difference image buffer
-- Output
-- color difference image
----------------------------------------------------------------------
function ColorDifferenceImage(Region, color, Diff)

local d0 = 0.2
local f = function(d)

if d < d0 then return (1 - (d/d0)ˆ2)ˆ2
else return 0 end

end
Clear(Diff, 0)
for x = 0, GetWidth(Region)-1 do

for y = 0, GetHeight(Region)-1 do
local d = abs(color - GetColor(Region, x, y))
SetColor(Diff, x, y, f(d)) end

end
end
return Diff

end

Program 3: The color difference image. Function f increases the
contrast of the result.

The quality of the computed parameters depends on the qual-
ity of the segmentation produced by the color difference image. In
particular, low contrast images may consistently give rise to simi-
lar stroke parameters. To increase the contrast, a function is used
that maps color difference values into the intensity values actually
stored in the resulting image.

2.3.2 Using image moments

Image moments are summations over all pixels of the image. The
notions of area, position and orientation are captured by the quanti-
ties M00, M01, M10, M11, M20, M02 , as defined by the following
equation:

Mim =

X

x

X

y

x
l
y
m
I(x; y) (1)

The stroke parameters corresponding to a rectangle that, when ren-
dered, creates an image that has the same image moments than the
color difference image of the region being approximated can be
computed from equation (1) — See [16] for details and formulas.
Program 4 shows the corresponding implementation.

----------------------------------------------------------------------
-- Computes stroke parameters for a neighborhood
-- Input
-- Source: stroke template image
-- x, y: neighborhood center
-- S: neighborhood size
-- Diff: color difference image buffer
-- Output
-- a set with the parameters:
-- xc, yc: center of stroke
-- color: stroke color
-- w, h: stroke size
-- theta: stroke orientation
----------------------------------------------------------------------
function StrokeParameters(Source, x, y, S, Diff)

local Region = Share(Source, x, y, S, S, New())
local color = GetColor(Source, x, y)
ColorDifferenceImage(Region, color, Diff)
local m00, m01, m10, m11, m02, m20 = Moments(Diff)
if m00 < S*S/100 then return nil end
local dxc = m10/m00;
local dyc = m01/m00;
local a = m20/m00 - dxc*dxc;
local b = 2*(m11/m00 - dxc*dyc);
local c = m02/m00 - dyc*dyc;
local t1 = a - c
local theta = atan2(b, t1) / 2;
local t2 = sqrt(b*b + t1*t1);
local t3 = a+c
if t3 + t2 < 0 then return nil end
local w = sqrt(6 * (t3 + t2));
if t3 - t2 < 0 then return nil end
local h = sqrt(6 * (t3 - t2));
local xc = x + floor(dxc - S/2 + 0.5);
local yc = y + floor(dyc - S/2 + 0.5);
if w < 1 or h < 1 then return nil end
return f xc = xc, yc = yc, w = w, h = h, theta = theta, color = color g

end

Program 4: The stroke parameters.

2.4 Determining the stroke distribution

The frequency information needed for the definition of a stroke dis-
tribution is obtained with the computation of a stroke area image —
an image in which the value of each pixel corresponds to the area of
a stroke approximating its neighborhood. The stroke distribution is
given by a stroke positions image, in which each position is marked
by a dot. This image is generated from the stroke area image by a
special dithering algorithm.

2.4.1 The stroke area image

The area of a stroke associated with any position in the source im-
age can be estimated by the M00 of the color difference image be-
tween the color and the neighborhood of the position. Program 5
shows the implementation of this idea and Figure 3 shows a sample
of the result it produces.

3



----------------------------------------------------------------------
-- Computes the stroke area image
-- Input
-- Source: source image
-- S: neighborhood size
-- Output
-- stroke are image
----------------------------------------------------------------------
function StrokeAreaImage(Source, S)

local w, h = GetWidth(Source), GetHeight(Source)
local Output = BlankCanvas(w, h)
local Diff = BlankCanvas(S, S)
local Region = New()
for y = 0, h-1 do

for x = 0, w-1 do
Share(Source, x, y, S, S, Region)
local wr, hr = GetWidth(Region), GetHeight(Region)
ColorDifferenceImage(Region, GetColor(Source, x, y), Diff)
SetColor(Output, x, y, Moment00(Diff, wr, hr)/(wr*hr))

end
end
return Output

end

Program 5: The stroke area image.

Figure 3: Example of stroke area image.

2.4.2 The stroke positions image

The stroke positions image is a monochrome dithered version of
the stroke area image. The algorithm used to create the stroke dis-
tribution must be designed to concentrate strokes around the dark
regions of the stroke area image, and to avoid large regions with-
out strokes. To this end, the original study used a modified version
of a space-filling curve dithering algorithm, in which the accumu-
lated intensity values were inversely proportional to the area of the
stroke.

Figure 4: Example of stroke positions image.

Figure 4 shows an example of how the stroke positions image
should look. This image was created from the stroke area image of
Figure 3 by our own parametrized dithering algorithm. This new
algorithm will be explained in due time, in Section 3.

2.4.3 Computing the stroke list

Completing the implementation of the painterly rendering algo-
rithm, Program 6 shows the procedure used to compute the stroke
list. The only addition to what was previously discussed is that, be-
fore being returned to the caller, the stroke list is sorted by stroke
area. This is to prevent fine details, represented by small strokes,
from being overwritten by larger strokes.

----------------------------------------------------------------------
-- Returns a list of strokes
-- Input
-- Source: stroke template image
-- S: neighborhood size
-- Output
-- a list with strokes, sorted by order
----------------------------------------------------------------------
function ComputeStrokeList(Source, S)

local List = fg
local w, h = GetWidth(Source), GetHeight(Source)
local Area = StrokeAreaImage(Source, S)
local Position = Dither(Area, S)
local Diff = Alloc(S, S, New())
for y = 0, h-1 do

for x = 0, w-1 do
if GetColor(Position, x, y) == 0 then

Append(List, StrokeParameters(Source, x, y, S, Diff))
end

end
end
Sort(List, function(a,b) return a.w*a.h > b.w*b.h end)
return List

end

Program 6: The stroke list.

3 Original contributions to the algorithm

The ideas presented so far describe a complex process to create
images that resembles human hand painting, as seen in Figure 1.
Some aspects of the process can be improved, other parts can be
implemented in a way that deserves documentation. This session
describes what was added by our research.

3.1 Multi-resolution analysis

As expected, the stroke parameters, computed with the aid of the
color difference images and the image moments theory, correctly
approximate local source image neighborhoods. Unfortunately, al-
though small details can be captured within a neighborhood, fea-
tures that ocupy more than the size of a single neighborhood cannot,
and must therefore be represented by a group of smaller strokes.
Unless the used stroke template image has a low opacity overall,
this composition becomes evident. Furthermore, a needlessly large
amount of small strokes must be used to represent what could be
approximated by fewer large strokes.

In order to capture strokes over a wider range of sizes, we use
a multi-resolution approach during the analysis phase of the algo-
rithm. Stroke lists are collected for each resolution in a pyramid
built from the source image. The painted result at each level is ob-
tained by blending its strokes over the result of the lower resolution
level. Program 7 shows the implementation of these ideas.

4



(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

Figure 5: Strokes at different resolution levels.

----------------------------------------------------------------------
-- Painterly renders an image, with multi-resolution
-- Input
-- Source: source image
-- Stroke: stroke template image
-- S: neighborhood size
-- L: number of levels
-- Output
-- painted version of source image
----------------------------------------------------------------------
function MultiResolutionPainterlyRender(Source, Stroke, S, L)

local Pyramid = Source
local l = 2
while l < = L do

local w, h = GetWidth(Pyramid[l-1])/2, GetHeight(Pyramid[l-1])/2
Pyramid[l] = Copy(Scale(Pyramid[l-1], w, h, New()), New())
l = l + 1

end
local Canvas = BlankCanvas(GetWidth(Pyramid[L])/2,

GetHeight(Pyramid[L])/2)
l = L
while l >= 1 do

local w, h = GetWidth(Pyramid[l]), GetHeight(Pyramid[l])
Canvas = Copy(Scale(Canvas, w, h, New()), New())
local Sp, E = Spread(S, L, l), Enhance(S, L, l)
local List = ExtendedStrokeList(Pyramid[l], S, Sp, E)
Canvas = PaintStrokeList(Stroke, List, Canvas)
l = l - 1

end
return Canvas

end

Program 7: The multi-resolution painter algorithm.

(a) Level 6

Figure 6: Composition of strokes at different resolution levels.

Figure 6 shows an example of painterly rendered image cre-
ated by the multi-resolution method. Figures 5(a) to (d) depict the
strokes at each resolution level that are composed together to cre-
ate the final image in Figure 6. The strokes were generated from
blurred images coming from the multiresolution pyramid. The im-
ages are shown scaled to the same resolution to simplify compari-
son, and to illustrate the steps followed by the algorithm.

5



(a) s: 6, e: 3 (b) s: 6, e: 6 (c) s: 6, e: 9

(d) s: 14, e: 5 (e) s: 14, e: 11 (f) s: 14, e: 14

Figure 7: Parametrized stroke positions images.

3.2 Parametrized stroke positions image

The stroke list for higher resolution levels should not only con-
centrate strokes on high frequency areas of the source image, but
also avoid placing strokes over lower frequency areas. Otherwise,
strokes coming from lower resolution levels would be consistently
obscured by the strokes coming from higher resolution levels, pro-
ducing a result no better then the single-resolution approach.

To avoid this problem, the new procedure used to create stroke
positions images accepts two parameters, referred to as the spread-
ing and the enhancing factors. The spreading factor places an upper
bound on the maximum distance between strokes, effectively con-
trolling the overall stroke density. The enhancing factor controls
the degree to which the density of strokes increases when close to
the edges found in the stroke area image.

Before being considered, the value of each pixel is passed
through the function defined by Equation (2), along with spread-
ing and enhancing parameters.

se(v; s; e) =
1

(s2 � 1)ve + 1
(2)

This function was designed to map the value 0 into 1 (small area
values generate more strokes) and the value 1 into 1

s2
(even large

areas contribute to the generations of strokes). The value 1

s2
was

chosen so that a stroke position is issued after at most s2 pixels. Fur-
thermore, the effect of the enhancing factor is to accentuate small
input values, which are exactly those close to the edges of the stroke
area image.

In our implementation, the dithering proceeds by traditional er-
ror diffusion. For each pixel, the error accumulated due to trun-
cation is spread to three of its adjacent pixels. However, in order

to avoid undesirable periodic artifacts, we shuffle the coefficients
used to diffuse the error. Although the randomization of the dither-
ing process may not be useful to produce high quality images, we
are not interested in photo-realism. Therefore, this simple idea is
enough to produce results with the desired properties, as seen in
Figure 7.

3.3 Optimized Image abstraction

During the two phases of the algorithm, the basic computations
performed over images are: stroke area image, stroke positions
image, color image difference, image moments, scaling, rotation
and blending. The choice of an appropriate image abstraction can
simplify the task of efficiently implementing these operations. In
particular, the abstraction should simplify computations involving
image neighborhoods and avoid unnecessary memory allocations.

/* image data type */
typedef struct Tmono f
float *buffer;
int width, height, row;
int reference;
g Tmono;
typedef Tmono *Pmono;

Program 8: C structure representing an image.

The data structure described by Program 8 can be used to store
information about a newly allocated image (such as the source
image of Figure 8) and can also store information representing part
of an image (such as the shared image on the same figure). The
row field always relate to the image that owns the buffer, and allows

6



source−>width
source−>row
shared−>row

s
o
u
r
c
e
−
>
h
e
i
g
h
t

shared−>width

source−>buffer

shared−>buffer

s
h
a
r
e
d
−
>
h
e
i
g
h
t

Figure 8: Meaning of image structure fields.

routines to correctly determine the position of each pixel in shared
references 1.

Our experience shows that adapting a image processing algo-
rithm to deal with the above image representation transparently,
either as input or output, is an effortless task. Furthermore, the
adapted version usually suffers no measurable performance degra-
dation. Therefore, every image processing function in the toolkit
makes no assumptions whether the buffers are shared or owned by
the images structures that point to them. A simple example in C of
such function is presented by Program 9.

/*------------------------------------------------------------------
* Clears an image.
* Input:
* in: image to be cleared
* c: clear value
* Returns:
* 0 in case of error, 1 if successful
*------------------------------------------------------------------*/
int mono clear(Pmono in, float c)
f

int skip = in� >row - in->width;
float *p = in� >buffer;
for (int y = 0; y < in� >height; y++) f

/* process row */
for (int x = 0; x � > width; x++) *p++ = c;
/* skip part of row not belonging to reference */
/* if image is not a reference, skip is 0 */
p += skip;

g

return 1;
g

Program 9: Clearing an image represented by the abstraction struc-
ture.

This agreement allows the extensive use of references throughout
all parts of the algorithm. Instead of supplying neighborhood limits

1The reference field of the data structure distinguishes between own-
ers and references. This information is only used by the memory manage-
ment system and is otherwise irrelevant.

to each function in the API, a reference to the neighborhood can
be created and the functions operate directly over them. The code
is greatly simplified by concentrating all clipping logic in a single
function and, since image parts are shared, there is no performance
loss due to memory allocation.

3.4 The use of an embedded language

As with most artistic processes, the creation of a non-photorealistic
filter involves a great deal of trial and error, specially because
measuring the quality of the resulting method is a subjective mat-
ter. Each new idea brings new challenges and possibilities and to
achieve good results it is important that as little time as possible is
spent experimenting with them. Therefore, an expressive program-
ming language should be used during the research process.

One possibility would be to use one of the many existing image
processing toolkits, such as that provided by Matlab. However, the
core operations needed by the painting algorithm, when not avail-
able directly from the toolkit, would have to be implemented in a
low performance scripting language on which the toolkit is based.
Furthermore, the use of most of these tools would present the au-
thors with technical and, possibly, copyright problems when dis-
tributing a stand-alone version of the resulting filter. These consid-
erations led us to use the Lua language [8].

Lua is a free language engine that can be easily embedded into
any C application. It provides an API that allows the applica-
tion to exchange data with Lua programs and also to extend Lua
with C functions. Thus, the engine can be used to build domain-
specific languages, such as the image processing toolkit devel-
oped for the present research. These extended languages inherit
Lua’s features, such as dynamic typing, automatic memory man-
agement with garbage collection and associative arrays, all accessi-
ble through a comfortable Pascal-like syntax. The simplicity of the
language can be seen by Programs 1-7 which are actually real Lua
source code, and a major part of our implementation.

Following these ideas, the painting algorithm was developed in
a hybrid architecture: the core image manipulation functions were
implemented in the C programming language, whereas the main al-
gorithm was implemented in the Lua programming language. This
approach brought together the performance of a compiled language
and the simplicity of a rapid prototyping language. New ideas could
be implemented in the Lua language and put into practice with-
out even recompiling the program. Once acceptable results were
reached, time critical operations were re-implemented in C.

4 Examples

The final aspect of a painterly rendered image is controlled by a se-
ries of factors. The artist has the freedom to choose the stroke tem-
plate image, the local area size, and the number of multi-resolution
levels.

In this section, we illustrate some of the results that can be ob-
tained by presenting two examples. The stroke template image for
both examples is a gaussian blob.

Figure 9 is the portrait of an old man. Figure 9(a) shows the
original image and Figure 9(b) shows the result of applying the al-
gorithm with the following parameters: stroke size = 10 and number
of levels = 4.

Figure 10 is a photograph of a tiger. Figure 10(a) shows the
original image and Figure 10(b) shows the result of applying the al-
gorithm with the following parameters: stroke size = 15 and number
of levels = 4.

7



5 Conclusions

In this work, we introduced a multi-resolution approach to the
painterly rendering by local source image approximation method.
The development of the research gave rise to a parametrized stroke
distribution algorithm, easily implemented. The use of a high-level
programming language presented a satisfactory framework to speed
up the development process. Finally, a specially designed image
abstraction simplified and optimized the implementation.

5.1 Future work

The image moment theory provides a powerful tool in the creation
of local source image approximations. The quality of these approx-
imations, however, is strongly dependent on the quality of the local
color difference images. In a future work, we intend to investigate
alternatives to the color difference images, attempting to produce
better controllable results.

The encoding and storage of stroke lists will also be studied. By
compacting the information provided by the lists, it is possible to
represent painterly rendered images in a space efficient way. If the
new segmentation techniques lead to substantial improvements, it
may even be possible to encode photo-realistic images, transform-
ing the scheme into an image compression algorithm.

Acknowledgments

This work was developed at the VISGRAF Laboratory of IMPA and
TECGRAF of PUC-Rio.

We would like to thank Danilo Tuler de Oliveira and Diogo
Vieira Andrade who participate in the early stages of this research.

The authors are partially supported by research grants from the
Brazilian Council for Scientific and Technological Development
(CNPq) and Rio de Janeiro Research Foundation (FAPERJ).

References

[1] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims,
Kurt W. Fleischer, and David H. Salesin. Computer-generated
watercolor. Proceedings of SIGGRAPH 97, pages pages 421–
430, August 1997.

[2] Gershon Elber. Line Art Illustrations of Parametric and Im-
plicit Forms. IEEE Transactions on Visualization and Com-
puter Graphics, 4(1), January – March 1998. ISSN 1077-
2626.

[3] Stuart Green, David Salesin, Simon Schofield, Aaron Hertz-
mann, Peter Litwinowicz, Amy Gooch, Cassidy Curtis, and
Bruce Gooch. Non-Photorealistic Rendering. SIGGRAPH
’99 Non-Photorealistic Rendering Course Notes, 1999.

[4] Paul E. Haeberli. Paint by numbers: Abstract image repre-
sentations. Proceedings of SIGGRAPH 90, 24(4):207–214,
August 1990.

[5] Aaron Hertzmann. Painterly rendering with curved brush
strokes of multiple sizes. Proceedings of SIGGRAPH 98,
pages 453–460, July 1998. ISBN 0-89791-999-8. Held in Or-
lando, Florida.

[6] Aaron Hertzmann and Ken Perlin. Painterly rendering for
video and interaction. NPAR 2000 : First International
Symposium on Non Photorealistic Animation and Rendering,
pages 7–12, June 2000.

[7] Aaron Hertzmann and Denis Zorin. Illustrating smooth sur-
faces. Proceedings of SIGGRAPH 2000, July 2000. Held in
New Orleans, Louisianna.

[8] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. Lua: an extensible extension language. Soft-
ware: Practice & Experience, 26(6):635–652, 1996.

[9] Allison W. Klein, Wilmot W. Li, Michael M. Kazhdan, Wag-
ner T. Correa, Adam Finkelstein, and Thomas A. Funkhouser.
Non-photorealistic virtual environments. Proceedings of SIG-
GRAPH 2000, pages 527–534, July 2000. ISBN 1-58113-
208-5.

[10] Peter Litwinowicz. Processing images and video for an im-
pressionist effect. Proceedings of SIGGRAPH 97, pages 407–
414, August 1997. ISBN 0-89791-896-7. Held in Los Ange-
les, California.

[11] Barbara J. Meier. Painterly rendering for animation. Proceed-
ings of SIGGRAPH 96, pages 477–484, August 1996. ISBN
0-201-94800-1. Held in New Orleans, Louisiana.

[12] Victor Ostromoukhov. Digital facial engraving. Proceedings
of SIGGRAPH 99, pages 417–424, August 1999. ISBN 0-
20148-560-5. Held in Los Angeles, California.

[13] Yachin Pnueli and Alfred M. Bruckstein. Digdurer - a digital
engraving system. In The Visual Computer, volume 10, pages
277–292, August 1994.

[14] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam
Finkelstein. Real-time hatching. Proceedings of SIGGRAPH
2001, pages 579–584, August 2001. ISBN 1-58113-292-1.

[15] Michio Shiraishi and Yasushi Yamaguchi. Image moment-
based stroke placement. Technical Report skapps3794, Uni-
versity of Tokyo, Tokyo Japan, May 1999.

[16] Michio Shiraishi and Yasushi Yamaguchi. An algorithm for
automatic painterly rendering based on local source image ap-
proximation. NPAR 2000 : First International Symposium on
Non Photorealistic Animation and Rendering, pages 53–58,
June 2000.

[17] François X. Sillion. The state of the art in physically-based
rendering and its impact on future applications. Second Eu-
rographics Workshop on Rendering (Photorealistic Rendering
in Computer Graphics), pages 1–10, 1994. Held in New York.

[18] David Small. Simulating watercolor by modeling diffusion,
pigment, and paper fibers. Proceedings of SPIE ’91, February
1991.

[19] Mario Costa Sousa and John W. Buchanan. Observational
models of graphite pencil materials. Computer Graphics Fo-
rum, 19(1):27–49, March 2000. ISSN 1067-7055.

[20] Steve Strassmann. Hairy brushes. Siggraph, 20(4):225–232,
August 1986.

[21] Saeko Takagi, Masayuki Nakajima, and Issei Fujishiro. Volu-
metric modeling of colored pencil drawing. Pacific Graphics
’99, October 1999. Held in Seoul, Korea.

[22] Georges Winkenbach and David H. Salesin. Computer-
generated pen-and-ink illustration. Proceedings of SIG-
GRAPH 94, pages 91–100, July 1994. ISBN 0-89791-667-0.
Held in Orlando, Florida.

[23] Eric Wong. Artistic rendering of portrait photographs. Mas-
ter’s thesis, Cornell University, 1999.

8



Figure 9: Oldman.

Figure 10: Tiger.

9


